Text

BR alpha

GRIPS Mathe: Lehrer-Informationen für den Unterricht Teil 1 - Größen: Länge, Fläche, Volumen, Masse, Zeit

Charlotte, Maurice und Sebastian Wohlrab planen eine Mountainbike-Tour in Sardinien. Sie haben viel Gepäck dabei. Die Fahrräder, drei Koffer, ein großes Zelt, Schlafsäcke, alles muss mit. Doch passen die Sachen überhaupt ins Auto? Mathelehrer Basti Wohlrab erklärt dabei alles Wichtige zu den am häufigsten benutzten Größenangaben und vor allem die unterschiedlichen Maßangaben. Wie werden Längen umgerechnet? Passen alle ins Zelt? Dazu berechnet Basti die Flächen.

Text

BR alpha

GRIPS Mathe: Lehrer-Informationen für den Unterricht - Parallelogramm und zusammengesetzte Formen

Ein Rechteck ist einfach konstruiert und berechnet, aber wie berechnet man ein Parallelogramm? Mathelehrer Basti Wohlrab geht mit seinen Schülern in eine Gärtnerei, wo sie beim Anlegen eines Beets unterschiedliche geometrische Figuren vergleichen und mit einer großen Folie formen. Sie lernen, wie man ein Parallelogramm konstruiert (über Rechteecke und Dreiecke) und die Fläche berechnet. Wie viele Silberrauten werden für das Beet gebraucht, wenn der Gärtner 3 Stück je Quadratmeter empfiehlt? Wie viele Buchsbäume für die Umrandung? Zum Schluss berechnet das Team noch die Menge benötigten Düngers. Im Online-Angebot gibt es weitere Filmteile zur Flächenberechnung zusammengesetzter Figuren.

Anderer Ressourcentyp

BR alpha

GRIPS Mathe: Volumen Prisma und Zylinder - GRIPS Mathe Lektion 22

In dieser Lektion dreht sich alles um Prismen und Dreieckssäulen. Im Prinzregententheater gibt es gerade eine Eisfläche und Mathelehrer Basti Wohlrab und seine beiden Schüler Matthias und Niklas berechnen, wie viel Wasser dafür notwendig war. Am Schuhkarton und anderen Karton-Formen erklärt Basti Wohlrab die Grundbegriffe von geraden Prismen, Quader, Würfel und Zylinder und berechnet mit der Formel das Volumen. Hinzu kommt die Umrechnung in Liter. Die Drehkulisse des Theaters besteht aus großen Dreiecksprismen, deren Volumen wieder über Grundfläche und Höhe berechnet wird. Die Lektion besteht aus 1 Film, 2 Mediaboxen, 4 Texten und 1 Übung.

Anderer Ressourcentyp

BR alpha

GRIPS Mathe: Der Satz des Pythagoras - GRIPS Mathe Lektion 29

Rechte Winkel spielen eine große Rolle im Alltag, das lernen die Schüler von Mathelehrer Basti Wohlrab praxisnah auf einer Baustelle. Bei der Wette, in welcher Höhe eine Leiter an der Wand lehnt, gewinnt Basti mit einer verdächtigen zentimetergenauen Antwort. Schritt für Schritt zeigt ihnen Basti den Trick: die Berechnung mithilfe des Satzes des Pythagoras. Damit können die Schüler bei einem rechtwinkeligen Dreieck Flächen und Strecken berechnen.Die Lektion besteht aus 1 Film, 2 Mediaboxen und 3 Texten.

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Ortskurve, Ortslinie: was das ist und wie man damit rechnet | A.24.01

Ortskurven (oder Ortslinien) gibt es nur bei Funktionsscharen (also wenn noch ein Parameter in der Funktion mit auftaucht). Was sind Ortskurven überhaupt? Eine Funktionenschar besteht aus unendlich vielen Funktionen (für jeden Wert des Parameters gibt’s eine Funktion). Alle Hochpunkte dieser Funktionen liegen auf einer neuen Kurve, nämlich der Ortskurve der Hochpunkte. Das Gleiche gilt natürlich auch für Tiefpunkte, Wendepunkte und Sonstiges. (Geschwollen formuliert: die Ortskurve aller Extrem- und Wendepunkte ist der “geometrische Ort aller Extrem- und Wendepunkte”.) Um eine Ortskurve zu bestimmen, braucht man zuerst die Koordinaten des entsprechenden Punktes in Abhängigkeit vom Parameter. Danach ist´s einfach: in der “x”-Gleichung nach dem Parameter auflösen und in die “y”-Gleichung einsetzen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Ortskurve, Ortslinie: was das ist und wie man damit rechnet, Beispiel 5 | A.24.01

Ortskurven (oder Ortslinien) gibt es nur bei Funktionsscharen (also wenn noch ein Parameter in der Funktion mit auftaucht). Was sind Ortskurven überhaupt? Eine Funktionenschar besteht aus unendlich vielen Funktionen (für jeden Wert des Parameters gibt’s eine Funktion). Alle Hochpunkte dieser Funktionen liegen auf einer neuen Kurve, nämlich der Ortskurve der Hochpunkte. Das Gleiche gilt natürlich auch für Tiefpunkte, Wendepunkte und Sonstiges. (Geschwollen formuliert: die Ortskurve aller Extrem- und Wendepunkte ist der “geometrische Ort aller Extrem- und Wendepunkte”.) Um eine Ortskurve zu bestimmen, braucht man zuerst die Koordinaten des entsprechenden Punktes in Abhängigkeit vom Parameter. Danach ist´s einfach: in der “x”-Gleichung nach dem Parameter auflösen und in die “y”-Gleichung einsetzen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Kurvendiskussion von Kurvenscharen | A.24.02

Wir behandeln hier verschiedene Fragestellungen, die spezifisch für eine Kurvenschar ist. Die eigentliche Funktionsanalyse (= Funktionsuntersuchung = Kurvendiskussion) machen wir hier nicht, wir übernehmen alle notwendigen Zwischenergebnisse aus Kapitel A.19


Dieses Material ist Teil einer Sammlung