Video

Havonix Schulmedien-Verlag

Kubische Funktion, Funktionsanalyse / Kurvendiskussion, Beispiel 2c: Wendepunkte berechnen

Wir betrachten eine kubische Funktion und machen davon eine Funktionsuntersuchung (=Kurvendiskussion). Wir berechnen die Nullstellen, Hoch-, Tief- und Wendepunkte, machen eine Skizze der Funktion und lassen dadurch die kosmische Energie des Universums eine Entspannung unseres Seelenzustands bewirken.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Brüche erweitern: so erweitert man einen Bruch, Beispiel 2 | B.02.02

Um einen Bruch zu erweitern, muss man Zähler und Nenner (oben und unten) mit der gleichen Zahl multiplizieren. Meist braucht man diese Rechenregel (zum Brüche erweitern) für den Hauptnenner von Brüchen, z.B. beim Addieren von Brüchen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Brüche kürzen: so kürzt man einen Bruch, Beispiel 4 | B.02.01

Um einen Bruch zu kürzen, muss man Zähler und Nenner (oben und unten) durch die gleiche Zahl teilen. Mit dieser Rechenregel kann man Brüche also vereinfachen, (man hat oben und unten kleinere Zahlen), der Bruch wird dadurch handlicher.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Potenz der Potenzen: eine Potenz nochmal potenzieren, Beispiel 2 | B.03.04

Will man eine Potenz nochmal potenzieren (man hat also eine doppelte Potenz), so werden die beiden Hochzahlen miteinander multipliziert. Die Regel: (a^x)^y = a^(x*y). Weil das so toll ist, rechnen wir ein paar Beispiele dazu.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Kopfrechnen: schriftliche Subtraktion, Beispiel 4 - B.08.03

Bei der schriftlichen Subtraktion (Minus Rechnung) schreibt man beide Zahlen so übereinander, dass das Komma genau übereinander steht (wenn es kein Komma gibt, denkt man sich das immer am Ende der Zahl). Dann fängt man ganz hinten an, zieht die untere Ziffer von der oberen ab. Ist die obere Zahl kleiner als die untere, denkt man sich 10 dazu und muss von den nächsten Stellen (links) eins mehr abziehen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Kopfrechnen: Einzeilen-Addition, Beispiel 3 - B.08.02

Bei der schriftlichen Addition gibt es ein paar kleine Tricks, um das Zusammenzählen etwas schneller zu gestalten. Nicht lebensnotwendig, aber manchmal hilfreich.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Kopfrechnen: Einzeilen-Addition, Beispiel 1 - B.08.02

Bei der schriftlichen Addition gibt es ein paar kleine Tricks, um das Zusammenzählen etwas schneller zu gestalten. Nicht lebensnotwendig, aber manchmal hilfreich.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Kopfrechnen: schriftliche Addition - B.08.01

Bei der schriftlichen Addition (Plus Rechnung) schreibt man beide Zahlen so übereinander, dass das Komma genau übereinander steht (wenn es kein Komma gibt, denkt man sich das immer am Ende der Zahl). Dann fängt man ganz hinten an, addiert Stelle für Stelle. Gibt es einen Überschlag (also mehr als 10), wird die Zehnerziffer mit den nächsten Stellen verrechnet.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Zeiten umrechnen mit dem Taschenrechner - B.07.03

Nicht überall gibt es das Dezimalsystem. Vor allem in der Zeitrechnung gibt es häufig Probleme bei der Umrechnung, gerade wenn Kommazahlen auftreten. z.B.: Wieviel Stunden, Minuten und Sekunden sind 6,54321 Tage? Um diese Zeitumrechnung durchzuführen, nimmt man die Kommazahl (0,54321) und multipliziert diese mit der Anzahl der Stunden, die der Tag hat == 6,54321 Tage = 6 Tage+0,54321*24Stunden = 6 Tage + 13,03704 Stunden. Nun kann man die Kommazahl der Stunden mit 60 multiplizieren um auf Minuten zu kommen, usw.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Brüche kürzen: so kürzt man einen Bruch, Beispiel 2 | B.02.01

Um einen Bruch zu kürzen, muss man Zähler und Nenner (oben und unten) durch die gleiche Zahl teilen. Mit dieser Rechenregel kann man Brüche also vereinfachen, (man hat oben und unten kleinere Zahlen), der Bruch wird dadurch handlicher.


Dieses Material ist Teil einer Sammlung