Suchergebnis für: ** Zeige Treffer 21 - 30 von 1626

Arbeitsblatt

Christian Schiffner, Hannah Tischer

SIKORE hilft, die Kopfrechenfertigkeiten zu verbessern

SIKORE hilft Lernwilligen, die Kopfrechenfertigkeiten zu verbessern. Kettenaufgabenkönnen erzeugt und sofort online gelöst werden. Mit nur wenigen Mausklicks werden weiterhin kostenlose Aufgabenblätter zum Ausdrucken erstellt. Die Schwierigkeitsstufe ist frei wählbar.

Anderer Ressourcentyp

BR alpha

GRIPS Mathe: Dezimalbrüche addieren und subtrahieren - Dezimalbrüche subtrahieren

In dieser Lektion zeigt Basti Wohlrab wie man Dezimalbrüche addiert und subtrahiert - ohne Taschenrechner versteht sich. Dazu sollen ihn Stina und Benny für 160 Euro komplett neu einkleiden. Die Preise haben Kommastellen, da heißt es richtig zusammenzählen. Bevor er die Rechnung Schritt für Schritt erklärt, zeigt Basti, wie man mit dem Runden von Zahlen das Ergebnis schnell abschätzen kann. Und wie geht das noch mal mit dem Komma beim schriftlichen Addieren? Basti zeigt wie Dezimalbrüche addiert werden. Beim anschließenden Kaffeetrinken geht alles umgekehrt, da muss Benny das korrekte Rausgeld durch Subtraktion von Dezimalbrüchen ausrechnen. Zum Abschluss gibt es Tipps für die Prüfung.

Anderer Ressourcentyp

BR alpha

GRIPS Mathe: Grundlagen Bruchzahlen - Bruchteile von Mengen - Grundlagen Bruchzahlen

Überall im Alltag begegnen uns Brüche: beim Kochen (ein Achtel Liter Milch), beim Essen (ein Viertel Stück Pizza) oder beim Einkaufen (ein halber Meter Stoff). Doch was ist ein Bruch noch einmal genau? Wie war das mit dem Zähler und dem Nenner? Basti Wohlrab zeigt in einer Küche am praktischen Beispiel, wie ein Bruch aufgebaut ist und wie die erweiterte Bruchschreibweise geht.

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Ortskurve, Ortslinie: was das ist und wie man damit rechnet, Beispiel 2 | A.24.01

Ortskurven (oder Ortslinien) gibt es nur bei Funktionsscharen (also wenn noch ein Parameter in der Funktion mit auftaucht). Was sind Ortskurven überhaupt? Eine Funktionenschar besteht aus unendlich vielen Funktionen (für jeden Wert des Parameters gibt’s eine Funktion). Alle Hochpunkte dieser Funktionen liegen auf einer neuen Kurve, nämlich der Ortskurve der Hochpunkte. Das Gleiche gilt natürlich auch für Tiefpunkte, Wendepunkte und Sonstiges. (Geschwollen formuliert: die Ortskurve aller Extrem- und Wendepunkte ist der “geometrische Ort aller Extrem- und Wendepunkte”.) Um eine Ortskurve zu bestimmen, braucht man zuerst die Koordinaten des entsprechenden Punktes in Abhängigkeit vom Parameter. Danach ist´s einfach: in der “x”-Gleichung nach dem Parameter auflösen und in die “y”-Gleichung einsetzen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Kurvendiskussion von Kurvenscharen mit CAS, Beispiel 5 | A.24.03

Wir behandeln hier verschiedene Fragestellungen, die spezifisch für Kurvenscharen sind und lösen diese ausnahmslos mit dem CAS. Die eigentliche Funktionsanalyse (= Funktionsuntersuchung = Kurvendiskussion) machen wir hier nicht, wir übernehmen alle notwendigen Zwischenergebnisse aus Kapitel A.19


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Kurvendiskussion von Kurvenscharen, Beispiel 2 | A.24.02

Wir behandeln hier verschiedene Fragestellungen, die spezifisch für eine Kurvenschar ist. Die eigentliche Funktionsanalyse (= Funktionsuntersuchung = Kurvendiskussion) machen wir hier nicht, wir übernehmen alle notwendigen Zwischenergebnisse aus Kapitel A.19


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Kurvendiskussion von Kurvenscharen, Beispiel 7 | A.24.02

Wir behandeln hier verschiedene Fragestellungen, die spezifisch für eine Kurvenschar ist. Die eigentliche Funktionsanalyse (= Funktionsuntersuchung = Kurvendiskussion) machen wir hier nicht, wir übernehmen alle notwendigen Zwischenergebnisse aus Kapitel A.19


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Schaubild einer Ableitungsfunktion zeichnen / skizzieren, Beispiel 2 | A.27.03

Es gibt eine relativ gute Methode, das Schaubild einer Ableitungsfunktion zu zeichnen: man zeichnet in einem beliebigen Punkt eine Tangente und misst deren Steigung. Die Steigung der Tangente ist der y-Wert der Ableitungsfunktion. Leider ist diese Methode nicht die schnellste. Die Methode über die sogenannte “NEW”-Tabelle ist schneller, funktioniert aber bei manchen Schaubildern schlecht. Das Schaubild einer Stammfunktion zu zeichnen ist ein kleines bisschen umständlicher. Hier ein paar Beispiele zum Ableitung skizzieren und zum Stammfunktion skizzieren.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Kubische Funktion, Funktionsanalyse / Kurvendiskussion, Beispiel 1d: Wendepunkte berechnen

Wir sehen hier ein Beispiel einer Funktionsuntersuchung (=Kurvendiskussion) einer Funktion dritten Grades. Wir berechnen die Nullstellen, Hoch-, Tief- und Wendepunkte, machen eine Skizze der Funktion und freuen uns des Lebens.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Kubische Funktion, Funktionsanalyse / Kurvendiskussion, Beispiel 2b: Hoch-/ Tiefpunkt berechnen

Wir betrachten eine kubische Funktion und machen davon eine Funktionsuntersuchung (=Kurvendiskussion). Wir berechnen die Nullstellen, Hoch-, Tief- und Wendepunkte, machen eine Skizze der Funktion und lassen dadurch die kosmische Energie des Universums eine Entspannung unseres Seelenzustands bewirken.


Dieses Material ist Teil einer Sammlung