Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Normalform einer Parabel aus Scheitelform bestimmen, Beispiel 2 | A.04.05

Die Scheitelform einer Parabel lautet: y=a*(x-xs)²+ys. Hierbei sind xs und ys die x- und y-Koordinaten des Scheitelpunktes, a ist der Streckfaktor [bei Normalparabel a=1 oder a=-1]. Hat man den Scheitelpunkt gegeben, so setzt man seine Koordinaten für xs und ys ein [x und y bleiben x und y], löst die Klammer auf [binomische Formel oder ausmultiplizieren] und erhält die Normalform der Parabel.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Seitenhalbierende berechnen, Beispiel 1 | A.02.12

Wie berechnet man die Gleichung einer Seitenhalbierenden? Na ja, eine Seitenhalbierende geht durch einen Punkt und die Mitte der gegenüberliegenden Seite. Also bestimmt man den Mittelpunkt der gegenüberliegenden Seite (siehe A.01.01) und hat nun zwei Punkte, durch welche die Gerade geht. Nun kann man die Geradengleichung über die beiden Punkte bestimmen (siehe A.02.10 bzw. A.02.11). Übrigens berechnet man den Schnittpunkt von 2 oder 3 Seitenhalbierenden, so erhält man den Schwerpunkt des Dreiecks.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Geradengleichung der Höhe berechnen, Beispiel 2 | A.02.13

Wie berechnet man die Gleichung einer Höhe? Eine Höhe steht senkrecht auf einer Dreiecksseite und geht durch den gegenüber liegenden Punkt. Dadurch, dass die Höhe senkrecht auf der Dreiecksseite steht, kann man ihre Steigung berechnen (man berechnet zuerst die Steigung der Dreiecksseite, davon nimmt man den negativen Kehrwert, denn dadurch, dass beide senkrecht aufeinander stehen verwendet man die Theorie von orthogonalen Geraden: die Steigung der einen Gerade ist der negative Kehrwert der anderen). Mit der Steigung der Höhe und dem gegenüber liegenden Punkt bestimmt man nun die Geradengleichung der Höhe (A.02.08 und A.02.09).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Winkel und Anstiegswinkel von Geraden berechnen, Beispiel 1 | A.02.15

Es gibt nur zwei Formeln, um Winkel zu berechnen. Die etwas hässlichere Formel finden Sie im nächsten Kapitel. Die einfachere Formel lautet “m=tan(alpha)”. Hierbei ist “m” die Steigung der Geraden und alpha immer der Winkel zwischen dieser Geraden und der x-Achse (oder einer anderen waagerechten Gerade). Diesen Winkel nennt man auch Anstiegswinkel. Will man den Schnittwinkel zwischen ZWEI Geraden berechnen, muss man für jede den Anstiegswinkel berechnen und diese dann zusammenzählen (oder abziehen, wenn beide Geraden steigen oder wenn beide fallen).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Schnittwinkel von Geraden berechnen, Beispiel 1 | A.02.16

Es gibt nur zwei Formeln, um Winkel zu berechnen. Die eine Formel, die wir hier behandeln, sieht zwar nicht ganz einfach aus, hat den großen Vorteil, dass die Rechnungen sehr einfach werden. Die Formel lautet “tan(alpha)=(m2-m1)/(1+m1*m2)”. Hierbei sind “m1” und “m2” die Steigungen der beiden Geraden. Man setzt “m1” und “m2” in die Formel ein und erhält den Schnittwinkel “alpha”.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Geraden, Gerade berechnen: Übungsaufgaben und Rechenbeispiele, Beispiel 4 - A.02.21

Wir stellen die Gleichungen von drei Geraden auf, von denen man unterschiedliche Angaben hat und damit Verschiedenes weiß. Die erste Winkelhalbierende ist von Bedeutung, wir brauchen einen Schnittpunkt und einen Schnittwinkel.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Schnittpunkt von Geraden berechnen | A.02.07

Will man zwei Funktionen schneiden, muss man die gleich setzen und nach “x” auflösen. Man setzt den erhaltenen x-Wert in eine der beiden Funktionen ein, um den y-Wert vom Schnittpunkt zu erhalten.


Dieses Material ist Teil einer Sammlung