Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Berechnung Dreieck: Fläche und Flächeninhalt Dreieck berechnen | A.03.02

Der Lösungsweg, den man am häufigsten sieht, verwendet die Formel A=½*g*h. Irgendeine der drei Seiten wählt man als Grundlinie. Die Länge der Grundlinie bestimmt man über den Abstand der beiden Endpunkte (Abstand Punkt-Punkt). Um die Höhe zu berechnen, berechnet man erst die Steigung der Grundlinie. Die Steigung der Höhe ist nun der negative Kehrwert der Grundliniensteigung. Zusammen mit den Koordinaten des gegenüberliegenden Eckpunktes kann man die Geradengleichung der Höhe bestimmen. Diese Lotgerade schneidet man mit der Gleichung der Grundlinie (die man natürlich ebenfalls bestimmen muss). Der Schnittpunkt ist der Lotfußpunkt. Der Abstand vom Lotfußpunkt zum gegenüberliegenden Eckpunkt ist die Länge der Höhe.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Fläche eines Dreiecks mit umschriebenen Rechtecken berechnen, Beispiel 1 | A.03.03

Eine recht intuitive Möglichkeit eine Dreiecksfläche im Koordinatensystem zu berechnen, kann man anwenden, wenn die Koordinaten der Eckpunkte ganzzahlig sind, dann kann man dem Dreieck nämlich ein Rechteck umschreiben. 1.Man spannt ein Rechteck um das Dreieck, so dass alle Seiten des Rechtecks parallel zur x-Achse und zur y-Achse sind und alle drei Eckpunkte des Dreiecks irgendwo auf dem Rechteck liegen. Nun entstehen außerhalb des gesuchten Dreiecks drei rechtwinklige Dreiecke. 2.Die Flächen dieser rechtwinkligen Dreiecke sind recht einfach zu berechnen. Man zieht diese Flächen von der Rechteckfläche ab und hat den gesuchten Flächeninhalt. Hört sich schlimmer an als es ist.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Fläche und Flächeninhalt eines Vierecks berechnen | A.03.05

Um die Fläche eines Vierecks zu berechnen, zerlegt man das Viereck in zwei Dreiecke und berechnet dann den Flächeninhalt der beiden Dreiecke. (Falls es sich beim Viereck um eine Quadrat- oder Rechtecksfläche handelt, geht’s natürlich auch einfacher über Länge mal Breite.) Die meines Erachtens jedoch bessere Variante ist dem Viereck ein achsenparalleles Rechteck zu umschreiben und dann ein paar rechtwinklige Dreiecke (evtl. auch ein Rechteck) abzuziehen. Details: siehe Beispielfilme.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mehrdimensionale Funktion: Extrempunkte berechnen, Beispiel 3 | A.51.02

Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. Das Überprüfen in der zweiten Ableitung (“Hesse-Matrix”) geht nach einem vorgegebenen Schema (wird im Hauptfilm erläutert).


Dieses Material ist Teil einer Sammlung

Anderer Ressourcentyp

Siemens Stiftung

Wir bauen eine symmetrische Burg

Sachinformation:Mittelalterliche Burgen-Baumeister arbeiteten viel mit symmetrischen Beziehungen. Hier wird Schritt für Schritt die Konstruktion der Burg Castel del Monte (Apulien, Süd-Italien) erklärt.Mit Symmetrie kann man doch Einiges anfangen! Ausgehend von einem Basisquadrat wird der Grundriss der achteckigen Burg nach und nach vervollständigt. Ein 3D-Modell und ein Foto der Burg zeigen das Endprodukt.

Anderer Ressourcentyp

Siemens Stiftung

Symmetrie - was ist das?

Sachinformation:Die Arten von Symmetrie, Beispiele aus dem Alltag, wichtige Kennzeichen für Symmetrie und grundlegende Fachbegriffe zum Thema werden mit einfachen Worten erklärt.Anmerkungen zur Herkunft des Wortes und zur Bedeutung von Symmetrie auch im erweiterten Sinne (Schönheit, Nützlichkeit, Gerechtigkeit) leiten die Betrachtung ein. Dann folgt eine Übersicht der drei Symmetriearten (Achsen-, Dreh- und Schubsymmetrie).

Anderer Ressourcentyp

Siemens Stiftung

Symmetrieübungen mit dem Geobrett (Lösung)

Lösungsblatt:Zum gleichnamigen ArbeitsblattHinweise und Ideen:Nähere Informationen finden Sie beim zugehörigen Arbeitsblatt “Symmetrieübungen mit dem Geobrett”, das auf dem Medienportal der Siemens Stiftung vorhanden ist.

Anderer Ressourcentyp

Siemens Stiftung

Symmetrie

Tafelbild, interaktiv:Einzelmedien zum Thema Symmetrie sind hier in didaktisch sinnvoller Weise für das Unterrichten mit einem interaktiven Whiteboard zusammengestellt. Alle Medien für das interaktive Tafelbild sind in dieser selbstextrahierenden Datei enthalten. Das Tafelbild kann ganz einfach durch Klick auf die ".exe"-Datei gestartet werden. Das Tafelbild besteht aus folgenden Medien:• 1 Grafik als Impulsbild für den Einstieg ins Thema (Titelbild)• 4 Fotos, bzw. Fotocollagen, die Symmetrie im Alltag sichtbar machen.• 2 interaktive Grafiken (Symmetrieachsen finden, Wie Drehsymmetrie entsteht)• 2 interaktive Übungen (Was ist nicht achsensymmetrisch?, Mit dem Spiegel rechnenl)• 3 Experimentier-/Bastelanleitungen (Achsen-, Schub- und Drehsymmetrie)• 2 Sachtexte (Was ist Symmetrie?, Wir bauen eine symmetrische Burg)• 2 Arbeitsblätter mit Lösungen (Schubsymmetrie, Symmetrieübungen mit dem Geobrett)• 1 Linkliste.Hinweise und Ideen:Die Medien, aus denen sich das Interaktive Tafelbild zusammensetzt, sind auch als Einzelmedien auf dem Medienportal der Siemens Stiftung verfügbar.

Anderer Ressourcentyp

Siemens Stiftung

Symmetrieachsen finden

Interaktive Grafik: In sechs Bildern achsensymmetrischer Objekte sollen die Schülerinnen und Schüler jeweils die Symmetrieachse erkennen. Die vermutete Lage der Achse(n) kann auch direkt an der Interaktiven Tafel eingezeichnet werden. Die beiden letzten Motive haben sogar mehrere Symmetrieachsen. Über einen Button kann die korrekte Achsenlage auch auf Klick eingeblendet werden.

Experiment

Siemens Stiftung

Basteleien mit Schubsymmetrie

Bastelanleitung:Aus einfachen Grundmustern und der Anwendung schubsymmetrischer Regeln entstehen Bandornamente.Vorgeschlagen wird die Herstellung von Kartoffelstempeln. Die Schülerinnen und Schüler können damit auf einfache Weise am Küchentisch eigene Ornamente herstellen. (Alternativ kann auch ein Stempel-Bastelset verwendet werden.) Eine weitere Variante ist die Arbeit mit transparentem Papier und einem durchgepausten Grundmuster.