Experiment

Siemens Stiftung

Basteleien mit Achsensymmetrie

Bastelanleitung:Ein- oder mehrfach gefaltetes Papier wird mit der Schere an den Rändern zugeschnitten. Aus bunten Farb- oder Tintentropfen entstehen durch Falten und Pressen reizvolle, achsensymmetrische Klecksbilder.Die durch das Falten entstehenden Falze im Papier sind sichtbare Symmetrieachsen, an denen sich die Muster, ob geschnitten oder gekleckst, spiegeln. Mehrfaches Falten erzeugt mehrfach gespiegelte Muster.

Bild

Siemens Stiftung

Bandornament als Wandschmuck

Foto:Eine Wandbordüre als Beispiel für Bandornamente und Parkettierungen sowie für angewandte Schubsymmetrie in Alltag und Kunst.Wandbordüren wie die im Foto abgebildete findet man in vielen Kinderzimmern. Damit lässt sich der Einstieg in das Thema Schubsymmetrie finden, etwa indem die Kinder berichten, was für Motive die Bordüre in ihrem Kinderzimmer zeigt.

Bild

Siemens Stiftung

Halteverbotsschild (drehsymmetrisch)

Foto: Ein Halteverbotsschild ist ein drehsymmetrisches Motiv.Das bekannte Schild führt zwanglos auf zwei wichtige Merkmale für Drehsymmetrie: Es geht um Drehung (runde Form) und um einen Drehpunkt (angedeutet durch die kreuzenden Linien).

Arbeitsblatt

Siemens Stiftung

Symmetrieübungen mit dem Geobrett

Arbeitsblatt: Vier Aufgaben zu Schub-, Dreh- und Achsensymmetrie. Vorgegebene Figuren müssen symmetrisch korrekt auf einem Geobrett vervollständigt werden.Die Übungen basieren auf einem 11x11-Raster und können sowohl auf einem tatsächlichen Geobrett als auch auf dem Papier gemacht werden. Die Lösungen dazu finden sich im gleichnamigen Lösungsblatt, das auf dem Medienportal der Siemens Stiftung vorhanden ist.

Lernkontrolle

Siemens Stiftung

Was ist nicht achsensymmetrisch?

Single-Choice-Test: Aus jeweils vier Fotos oder Illustrationen von Alltagsgegenständen sollen die Schülerinnen und Schüler denjenigen Gegenstand herausfinden, der nicht achsensymmetrisch ist.Hier kommt es auf Augenmaß an: In vielen Objekten steckt symmetrische Formsprache, aber nicht immer ist sie perfekt ausgearbeitet. Die Brezel ist eigentlich eine achsensymmetrische Form, aber manche Brezeln sind ein bisschen schief.

Anderer Ressourcentyp

Siemens Stiftung

Leitfaden zum interaktiven Tafelbild “Symmetrie”

Leitfaden:Das Dokument gibt einen Überblick über den inhaltlichen und didaktischen roten Faden des Interaktiven Tafelbilds “Symmetrie”.Dieser Leitfaden richtet sich an die Lehrkraft. Es werden alle Medien des Interaktiven Tafelbilds vorgestellt und beispielhaft in einen didaktisch sinnvollen Zusammenhang gebracht.

Bild

Siemens Stiftung

Symmetrie

Grafik:Drei achsensymmetrische Objekte (stilisiertes Gesicht, Schmetterling, Buchstabe “A”) und ein unsymmetrisches Objekt (Berg) werden gezeigt.Hinweise und Ideen:Als Impulsbild, um die Vorerfahrungen der Schülerinnen und Schüler zu aktivieren und zum Thema Symmetrie hinzuführen. Was haben diese Objekte (mit einer Ausnahme) gemeinsam?

Simulation

Logo creative commons

Ulrich Steinmetz, Medienberater Kreis Lippe

GeoGebra: Optimale Flächenaufteilung

2 Nachbarn möchten ihre Grundstücksflächen optimieren, ohne dass jemand dabei benachteiligt wird. Aber wie?

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Extremwertaufgaben im Alltag: Zylinder in einer Kugel, Volumen einer Schachtel, Beispiel 2 | A.21.02

Bei einigen Typen von Extremwertaufgaben sind keine Funktionen im Spiel. (Z.B. steckt ein Zylinder in einer Kugel, der dann maximales Volumen haben soll. Oder das Volumen einer Schachtel soll maximal werden, die aus einem Karton gebastelt wird oder …). Es geht also um Anwendungen aus dem “Alltag”. Ich nenne diese reale Anwendungen, aber eigentlich haben sie keinen richtigen, offiziellen Namen. Übrigens vereinfacht bei diesen Aufgaben sehr häufig der Strahlensatz die Rechnung sehr stark. (Also: Strahlensatz am Start?!?)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Extremwertaufgabe Dreieck / Viereck: maximale Fläche berechnen, Beispiel 2 | A.21.03

Eine der häufig auftauchenden Extremwertaufgaben: Man muss die maximale Fläche eines Dreiecks oder die maximale Fläche eines Rechtecks bestimmen, wobei ein Eckpunkt (oder zwei) auf einer vorgegebenen Funktion liegt. Man verwendet die Formel A=½·g·h bzw. A=a·b. Eine der Seiten ist meist eine waagerechte Strecke (die man als Differenz der x-Werte berechnet), die andere Seite ist meist senkrecht (wird also als Differenz der y-Werte berechnet). Dieses in die Formel einsetzen und schon ist die Aufgabe halb gelöst.


Dieses Material ist Teil einer Sammlung