Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Partielle Ableitung, Beispiel 2 | A.51.01

Wenn eine Funktion von mehreren Variablen abhängt, kann man eigentlich nicht mehr von der “Ableitung” sprechen, denn man muss schließlich präzisieren, ob man nach “x”, nach “y” oder was auch immer ableitet. Also spricht man von der “partiellen Ableitung nach x”, oder der “partiellen Ableitung nach y”, usw. Betrachtet man z.B. die Ableitung nach x (oder “Differenzierung” nach x, wie man es auch nennen kann), wird “x” als Variable betrachtet und alle anderen Buchstaben als Parameter (also als Zahl). Schreibt man sämtliche partiellen Ableitungen übereinander, wird das ein Vektor, der “Gradient” heißt. Die zweiten partiellen Ableitungen kann man der Übersicht halber als Matrix aufschreiben, welche “Hesse-Matrix” heißt.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Partielle Ableitung, Beispiel 7 | A.51.01

Wenn eine Funktion von mehreren Variablen abhängt, kann man eigentlich nicht mehr von der “Ableitung” sprechen, denn man muss schließlich präzisieren, ob man nach “x”, nach “y” oder was auch immer ableitet. Also spricht man von der “partiellen Ableitung nach x”, oder der “partiellen Ableitung nach y”, usw. Betrachtet man z.B. die Ableitung nach x (oder “Differenzierung” nach x, wie man es auch nennen kann), wird “x” als Variable betrachtet und alle anderen Buchstaben als Parameter (also als Zahl). Schreibt man sämtliche partiellen Ableitungen übereinander, wird das ein Vektor, der “Gradient” heißt. Die zweiten partiellen Ableitungen kann man der Übersicht halber als Matrix aufschreiben, welche “Hesse-Matrix” heißt.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Partielle Ableitung, Beispiel 1 | A.51.01

Wenn eine Funktion von mehreren Variablen abhängt, kann man eigentlich nicht mehr von der “Ableitung” sprechen, denn man muss schließlich präzisieren, ob man nach “x”, nach “y” oder was auch immer ableitet. Also spricht man von der “partiellen Ableitung nach x”, oder der “partiellen Ableitung nach y”, usw. Betrachtet man z.B. die Ableitung nach x (oder “Differenzierung” nach x, wie man es auch nennen kann), wird “x” als Variable betrachtet und alle anderen Buchstaben als Parameter (also als Zahl). Schreibt man sämtliche partiellen Ableitungen übereinander, wird das ein Vektor, der “Gradient” heißt. Die zweiten partiellen Ableitungen kann man der Übersicht halber als Matrix aufschreiben, welche “Hesse-Matrix” heißt.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Partielle Ableitung, Beispiel 6 | A.51.01

Wenn eine Funktion von mehreren Variablen abhängt, kann man eigentlich nicht mehr von der “Ableitung” sprechen, denn man muss schließlich präzisieren, ob man nach “x”, nach “y” oder was auch immer ableitet. Also spricht man von der “partiellen Ableitung nach x”, oder der “partiellen Ableitung nach y”, usw. Betrachtet man z.B. die Ableitung nach x (oder “Differenzierung” nach x, wie man es auch nennen kann), wird “x” als Variable betrachtet und alle anderen Buchstaben als Parameter (also als Zahl). Schreibt man sämtliche partiellen Ableitungen übereinander, wird das ein Vektor, der “Gradient” heißt. Die zweiten partiellen Ableitungen kann man der Übersicht halber als Matrix aufschreiben, welche “Hesse-Matrix” heißt.


Dieses Material ist Teil einer Sammlung

Arbeitsblatt

Siemens Stiftung

Schubsymmetrie - Symmetrie durch Verschieben von Mustern

Arbeitsblatt: Durch Anwendung von Schubsymmetrie auf einfache Grundmuster entstehen Bandornamente und Parkettierungen. Mit diesem Arbeitsblatt werden die wichtigen Merkmale und Begriffe der Schubsymmetrie, z. B. der Elementarabstand, erarbeitet. In vier Aufgaben sollen z. B. Elemente herausgearbeitet oder Symmetrieachsen eingezeichnet werden.

Bildungsbereiche

Elementarbildung

Fach- und Sachgebiete

Mathematik

Medientypen

Arbeitsblatt

Lernalter

6-10

Schlüsselwörter

Geometrie Geometrische Figur

Sprachen

Deutsch

Bild

Siemens Stiftung

Symmetrie ist überall

Fotocollage: Symmetrische Gegenstände, wie man sie zuhause und draußen überall sehen kann.Symmetrie ist ein Alltagsphänomen, das, wenn die Schülerinnen und Schüler nur genauer hinsehen, in vielen Dingen ihrer Lebenswelt erkannt werden kann. Auch als Anregung für eigene Erkundungen und Suche nach Symmetrie. Hinweise und Ideen: Der abgebildete Hampelmann ist nicht rein achsensymmetrisch, könnte aber auf den ersten Blick von den Schülerinnen und Schülern so eingeschätzt werden. Das Bild kann als Impuls genutzt werden, um die Schülerinnen und Schüler zu eigenen, achsensymmetrischen Hampelmann-Konstruktionen anzuregen.

Bildungsbereiche

Elementarbildung

Fach- und Sachgebiete

Mathematik

Medientypen

Bild

Lernalter

6-10

Schlüsselwörter

Achsensymmetrie Geometrie Geometrische Figur Optik

Sprachen

Deutsch

Anderer Ressourcentyp, Arbeitsblatt

Siemens Stiftung

Mit dem Spiegel rechnen

Rechenaufgabe, interaktiv:Fünf Münzen liegen auf dem Tisch - wie muss der Taschenspiegel platziert werden, damit die Münzenzahl verdoppelt wird? (Und vier andere Aufgaben.) Vorgegeben sind jeweils drei Möglichkeiten, den Taschenspiegel zu positionieren. Die richtige Spiegelposition wird nach Klick auf den Häkchen-Button angezeigt. Gleichzeitig wird ein Foto, das die richtige Lösung zeigt, eingeblendet.


Arbeitsblatt

Siemens Stiftung

Symmetrieübungen mit dem Geobrett

Arbeitsblatt: Vier Aufgaben zu Schub-, Dreh- und Achsensymmetrie. Vorgegebene Figuren müssen symmetrisch korrekt auf einem Geobrett vervollständigt werden.Die Übungen basieren auf einem 11x11-Raster und können sowohl auf einem tatsächlichen Geobrett als auch auf dem Papier gemacht werden. Die Lösungen dazu finden sich im gleichnamigen Lösungsblatt, das auf dem Medienportal der Siemens Stiftung vorhanden ist.

Bildungsbereiche

Elementarbildung

Fach- und Sachgebiete

Mathematik

Medientypen

Arbeitsblatt

Lernalter

6-10

Schlüsselwörter

Achsensymmetrie Geometrie Geometrische Figur

Sprachen

Deutsch

Lernkontrolle

Siemens Stiftung

Was ist nicht achsensymmetrisch?

Single-Choice-Test: Aus jeweils vier Fotos oder Illustrationen von Alltagsgegenständen sollen die Schülerinnen und Schüler denjenigen Gegenstand herausfinden, der nicht achsensymmetrisch ist.Hier kommt es auf Augenmaß an: In vielen Objekten steckt symmetrische Formsprache, aber nicht immer ist sie perfekt ausgearbeitet. Die Brezel ist eigentlich eine achsensymmetrische Form, aber manche Brezeln sind ein bisschen schief.

Bildungsbereiche

Elementarbildung

Fach- und Sachgebiete

Mathematik

Anderer Ressourcentyp

Siemens Stiftung

Leitfaden zum interaktiven Tafelbild “Symmetrie”

Leitfaden:Das Dokument gibt einen Überblick über den inhaltlichen und didaktischen roten Faden des Interaktiven Tafelbilds “Symmetrie”.Dieser Leitfaden richtet sich an die Lehrkraft. Es werden alle Medien des Interaktiven Tafelbilds vorgestellt und beispielhaft in einen didaktisch sinnvollen Zusammenhang gebracht.