Suchergebnis für: ** Zeige Treffer 1591 - 1599 von 1599

Video

Havonix Schulmedien-Verlag

Entfernung berechnen, Beispiel 1 | A.01.04

Entfernungen von zwei Punkten bestimmt man entweder über die Entfernungsformel berechnen: Abstand = Wurzel aus ((x2-x1)^2+(y2-y1 )^2) oder man zeichnet ein Steigungsdreieck ein und kann dann über Pythagoras die gewünschte Streckenlänge berechnen. Liegen die beiden Punkte nebeneinander oder übereinander, kann man Entfernung der beiden Punkte auch auslesen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Mittelpunkt berechnen, Beispiel 2 | A.01.01

Den Mittelpunkt von zwei gegebenen Punkten berechnet man im Koordinatensystem sehr einfach. Man bestimmt die Mitte der x-Werte und die Mitte der y-Werte. (Man bestimmt z.B. die Mitte von zwei x-Werten, indem man die beiden x-Werte zusammenzählt und das Ergebnis durch 2 teilt).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Verschieben von Punkten, Beispiel 3 - A.01.03

Punkte verschiebt man ganz einfach, Beim Verschieben nach links oder rechts ändert sich der x-Wert des Punktes, bei Verschiebungen hoch oder runter ändert sich der y-Wert.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Punkt an Gerade spiegeln; Symmetrieachse | A.01.06

Wir spiegeln hier nur an senkrechten oder waagerechten Achsen, da Spiegeln an schräg liegenden Geraden wesentlich komplizierter ist. Am einfachsten spiegelt man, indem man alles einzeichnet und sich dann überlegt, wo der gespiegelte Punkt nun “Hin wandert”. Falls Sie Formeln haben wollen: Spiegelt man einen Punkt P(a|b) an einer senkrechten Gerade mit der Gleichung x=u, so hat der Spiegelpunkt (=Ergebnispunkt) die Koordinaten: P'(2*u-a|b). Spiegelt man einen Punkt P(a|b) an einer waagerechten Gerade mit der Gleichung y=v, so hat der Spiegelpunkt (=Ergebnispunkt) die Koordinaten: P'(a|2*v-b). Spiegelt man an schräg liegenden Geraden (das sind dann Symmetrieachsen), so macht man das am besten nur grafisch mit dem Geo-Dreieck.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Gerade, y-Achsenabschnitt und wie man mit Geraden rechnet | A.02

Jeder weiß was Geraden sind (hoffentlich). Jede Gerade hat die Form: y=Zahl*x+Zahl, also y=m*x+b oder y=m*x+c oder y=a*x+b oder... Die Zahl vor dem “x” (die meistens “m” heißt) ist hierbei die Steigung, die Zahl hinter dem “+” (die meist “b” oder “c” heißt) ist der y-Achsenabschnitt (der Schnittpunkt mit der y-Achse)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Geraden einzeichnen, Beispiel 6 - A.02.01

Das Einzeichnen einer Gerade ist sehr einfach. Man muss nur wissen, welche Zahl der Gerade welche Bedeutung hat. Nehmen wir an, die Gerade hat die Form: y=m*x+b. Man beginnt mit "b", das ist der y-Achsen Abschnitt (der Schnittpunkt mit der y-Achse). "m" ist die Steigung. Man beginnt also beim Schnittpunkt mit der y-Achse (den man eben eingezeichnet hat), geht immer eins nach rechts und dann so viel hoch, wie der Wert der Steigung ist. (bei negativer Steigung geht man dementsprechend runter). Beides verbinden und die Gerade zeichnen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Parabel: so kann man Parabeln berechnen - A.04

Unter einer Parabel versteht man üblicherweise eine quadratische Parabel, eine Funktion der Form: y=Zahl*x²+Zahl*x+Zahl bzw. y=ax²+bx+c. Parabeln sind neben den Geraden die einfachsten Funktionen und daher recht wichtig. Viele Grundlagenrechnungen von Funktionen werden hier erstmalig angewendet. (Zeichnen von Funktionen, Berechnung von Nullstellen, Verschieben, …). Beginnt eine Funktion nicht mit "x²" sondern mit höheren Potenzen, nennt man zwar auch Parabel, aber dann "Parabel höherer Ordnung" oder "Polynom höherer Ordnung" oder "ganzrationale Funktion höherer Ordnung". (Statt "höherer Ordnung" kann man "3.Grades", "4.Grades", .. sagen). Irgendeine Gleichung mit (quadratischen) Parabeln nennt man auch "Gleichung zweiter Ordnung" oder "quadratische Gleichung".


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: LFF Linearfaktorform einer Parabel aus Normalform bestimmen, Beispiel 1 | A.04.06

Aus der Linearfaktorform (LFF) der Parabel kann man die Nullstellen der Parabel recht einfach ablesen. Die LFF lautet: y=a*(x-x1)*(x-x2), wobei x1 und x2 die Nullstellen der Parabel sind. Hat man also die Normalform der Parabel gegeben und sucht die LFF, berechnet man erst die Nullstellen der Parabel (meist mit der Mitternachtsformel, also p-q-Formel oder a-b-c-Formel), setzt diese für x1 und x2 in die Formel ein (a ist die Zahl, die vor dem x² stand).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Normalform einer Parabel aus Linearfaktorform LFF bestimmen, Beispiel 2 | A.04.07

Man kann aus der Linearfaktorform (LFF) der Parabel sehr einfach die Normalform erhalten. Man muss einfach nur die beiden Klammern auflösen (also alles ausmultiplizieren).


Dieses Material ist Teil einer Sammlung