Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Geradengleichung aus P und m über Normalform bestimmen, Beispiel 6 | A.02.08

Hat man von einer Geraden einen Punkt und die Steigung gegeben, kann man die Geradengleichung recht einfach bestimmen. Eine der Möglichkeiten wäre: die Steigung für “m” und die Koordinaten des Punktes für “x” und “y” in die Gleichung “y=m*x+b” einsetzen um “b” zu bestimmen. Nun setzt man die Werte für “m” und “b” wieder ein und hat die Geradengleichung.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Geradengleichung bestimmen über Punktsteigungsform PSF, Beispiel 3 | A.02.09

Hat man von einer Geraden einen Punkt und die Steigung gegeben, kann man die Geradengleichung recht einfach bestimmen. Eine der Möglichkeiten wäre die Steigung und die Koordinaten des Punktes für “m”, “x0” und “y0” in die Punkt-Steigungs-Form (PSF) ein und löst nach “y” auf. Wie lautet die Gleichung der PSF überhaupt? Es gibt mehrere Möglichkeiten für die PSF. Hier die beiden wichtigsten: a) “y=m*(x-x0)+y0” b) “m=(y-y0)/(x-x0)”


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Geradengleichung bestimmen über Punktsteigungsform PSF, Beispiel 5 | A.02.09

Hat man von einer Geraden einen Punkt und die Steigung gegeben, kann man die Geradengleichung recht einfach bestimmen. Eine der Möglichkeiten wäre die Steigung und die Koordinaten des Punktes für “m”, “x0” und “y0” in die Punkt-Steigungs-Form (PSF) ein und löst nach “y” auf. Wie lautet die Gleichung der PSF überhaupt? Es gibt mehrere Möglichkeiten für die PSF. Hier die beiden wichtigsten: a) “y=m*(x-x0)+y0” b) “m=(y-y0)/(x-x0)”


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Geradengleichung bestimmen über Zwei-Punkte-Form ZPF, Beispiel 2 | A.02.10

Kennt man von einer Geraden zwei Punkte (durch welche die Gerade geht), kann man die Geradengleichung recht einfach bestimmen. Eine der Möglichkeiten wäre die Koordinaten der Punkte für “x1”, “x2”, “y1” und “y2” in die Zwei-Punkte-Form (ZPF oder 2PF) ein und löst nach “y” auf. Wie lautet die Gleichung der ZPF überhaupt? Es gibt mehrere Möglichkeiten dafür. Hier die beiden wichtigsten: a) “(y2-y1)/(x2-x1)=(y-y1)/(x-x1)” b) “y=(y2-y1)/(x2-x1)*(x-x1)+y1”


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Geraden mit Parameter, Beispiel 1 | A.02.17

Wenn in einer Geradengleichung ein Parameter auftaucht (also zusätzlich zum “x” noch ein “t” oder “k” oder …), so spricht man von einer “Geradenschar” (man hat schließlich eine ganze Schar von Geraden). Jede einzelne Gerade nennt man “Schargerade” (eine Gerade aus dieser Schar). Die üblichen Fragen bei Geradenscharen sind Nullstellen (also y=0 setzen und nach “x” auflösen), irgendeine Punktprobe (man setzt also die Koordinaten von irgendeinem gegebenen Punkt ein und muss nach “t” auflösen), und ähnliches Zeug. Auch wenn es jetzt blöd klingt: wie bei allen Funktionenscharen begegnet man keinen anderen Fragestellungen, als bei den entsprechenden Funktionen oder Geraden ohne Parameter. Es wird nur eine Stufe hässlicher, weil man in jedem Rechenschritt diesen herrlichen, wundervollen und anmutigen Parameter mitschleppt. Und - man muss die mathematischen Theorien sehr gut kennen. Man muss also GENAU wissen, wie man Schritt für Schritt vorgeht, um Nullstellen zu berechnen, Schnittpunkte zu berechnen, Punktproben durchführt, etc.. denn genau die gleiche Abfolge macht man nun auch mitsamt Parameter.


Dieses Material ist Teil einer Sammlung