Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Extremwertaufgaben, schwierige Übungen, Beispiel 3 | A.21.09

Leider gehören viele der Extremwertaufgaben nicht zu den letztgenannten Standardfällen. Viele der Extremwertaufgaben sind immer wieder neue, hässliche Typen. Hier ein Versuch ein paar davon vorzurechnen. In den Beispielen geht es um die Fläche von einem beliebigen Dreieck, Fläche vom Trapez und zwei senkrechten Geraden die aus einer Fläche einen Streifen ausschneiden.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Schnittwinkel mit Schnittwinkel-Formel berechnen, Beispiel 5 | A.22.03

Beim Schnittwinkel ist es wie immer im Leben: kaum scheint etwas einfach, hat´s auch schon blöde Seiten. Also: es gibt natürlich auch eine recht einfache Methode, den Schnittwinkel zwischen zwei Funktionen zu berechnen, leider ist die Formel dazu etwas hässlich. Zuerst berechnet man den Schnittpunkt beider Funktionen (falls man ihn nicht schon hat). Danach berechnet man die Steigungen beider Funktionen in diesem Punkt (über die erste Ableitung). Danach kann man den Winkel alpha mit der Schnittwinkelformel bestimmen: tan(alpha)=(m2-m1)/(1+m1*m2).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Funktionen verschieben: so wird’s gemacht, Beispiel 2 | A.23.01

Wie kann man Funktion verschieben? Bei einer Verschiebung um “a” nach links, ersetzt man in der Funktion jeden Buchstaben “x” durch “x+a”. Ebenso erreicht man ein Verschieben von Funktionen nach rechts, indem man “x” durch “x-a” ersetzt. Verschiebungen von Funktionen in die y-Richtung sind einfacher. Man verschiebt eine Funktion um einen Wert “b” nach oben oder unten, indem man an die Funktion f(x) diese Zahl dranhängt. Verschieben um “b” nach oben ist somit: “f(x)+b”, Verschieben nach unten ist: “f(x)-b”.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Funktionen verschieben: so wird’s gemacht, Beispiel 5 | A.23.01

Wie kann man Funktion verschieben? Bei einer Verschiebung um “a” nach links, ersetzt man in der Funktion jeden Buchstaben “x” durch “x+a”. Ebenso erreicht man ein Verschieben von Funktionen nach rechts, indem man “x” durch “x-a” ersetzt. Verschiebungen von Funktionen in die y-Richtung sind einfacher. Man verschiebt eine Funktion um einen Wert “b” nach oben oder unten, indem man an die Funktion f(x) diese Zahl dranhängt. Verschieben um “b” nach oben ist somit: “f(x)+b”, Verschieben nach unten ist: “f(x)-b”.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Funktionen strecken: so wird’s gemacht, Beispiel 3 | A.23.02

Wie kann man eine Funktion strecken? Man kann sie um den Faktor “c” in y-Richtung strecken, indem man die Funktion mit dieser Zahl “c” multipliziert. (Aus “f(x)” wird “c*f(x)”). Man streckt eine Funktion um den Faktor “d” in x-Richtung, indem man jeden Buchstaben “x” der Funktion durch “x/d” ersetzt. (Aus “x” wird “x/d”). Bemerkung: Ist ein Streckfaktor kleiner als 1, nennt man den Vorgang “Funktion stauchen” (die Funktion wird also gequetscht, nicht gestreckt). Ist ein Streckfaktor negativ, wird die Funktion zusätzlich noch an der x bzw. y-Achse gespiegelt.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Funktionen spiegeln an der x-Achse, an der y-Achse oder am Ursprung, Beispiel 3 | A.23.03

Will man eine Funktion spiegeln, so ist ein Minuszeichen entscheidend. Bei einer Achsenspiegelung an der y-Achse, muss man jede Variable “x” der Funktion durch “-x” ersetzt. Man spiegelt eine Funktion an der x-Achse, indem man vor die Funktion ein Minus setzt (aus “f(x)” wird “-f(x)”). Braucht man eine Punktspiegelung von einer Funktion am Ursprung, so erhält man das durch eine Achsenspiegelung an der x-Achse UND einer an der y-Achse (aus “f(x)” wird “-f(-x)”).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Funktionen spiegeln über Formel, Beispiel 1 | A.23.04

Beim Spiegeln von Funktionen an einer senkrechten Gerade der Form x=a, wird in der Funktion f(x) jeder Buchstabe “x” durch “2a-x” ersetzt. Benötigt man die Spiegelungen an einer waagerechten Geraden y=b, ist die gesuchte Funktion: g(x)=2b-f(x). Braucht man von einer Funktion die Punktspiegelung an einem Punkt S(a|b), so entspricht das zwei Achsenspiegelungen: nämlich der Spiegelung an der senkrechten Gerade x=a UND an der waagerechten Gerade y=b.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Funktionen spiegeln über Formel, Beispiel 3 | A.23.04

Beim Spiegeln von Funktionen an einer senkrechten Gerade der Form x=a, wird in der Funktion f(x) jeder Buchstabe “x” durch “2a-x” ersetzt. Benötigt man die Spiegelungen an einer waagerechten Geraden y=b, ist die gesuchte Funktion: g(x)=2b-f(x). Braucht man von einer Funktion die Punktspiegelung an einem Punkt S(a|b), so entspricht das zwei Achsenspiegelungen: nämlich der Spiegelung an der senkrechten Gerade x=a UND an der waagerechten Gerade y=b.


Dieses Material ist Teil einer Sammlung