Suchergebnis für: ** Zeige Treffer 11 - 20 von 2857

Video

Havonix Schulmedien-Verlag

Komplexe Zahlen addieren, multiplizieren, konjugieren; Beispiel 3 | A.54.02

Der Trick beim Addieren oder Multiplizieren von komplexen Zahlen besteht darin, die Zahlen vorher immer in die geschickte Form umzuwandeln. Zum “Addieren” sollten die komplexen Zahlen immer eine kartesische Form haben (falls sie also in Polarform gegeben sind, umwandeln!). Zum “Multiplizieren” sollten die komplexen Zahlen immer eine Polarform haben (falls sie also in kartesischer Form gegeben sind, umwandeln!). Das Konjugieren von komplexen Zahlen geht in allen Darstellungsformen einfach.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Inhomogene Differentialgleichung über partikuläre Lösung lösen, Beispiel 1 | A.53.05

Bei einer inhomogenen DGL höherer Ordnung macht man zwei Schritte (beide sind lang). Im ersten Schritt löst man die zugehörige homogene DGL. Die zugehörige Lösung ist der erste Teil der Gesamtlösung. Im zweiten Schritt versucht man die “spezielle Lösung” oder “partikuläre Lösung” zu finden. Diese ist meistens vom gleichen Typ, wie die Störfunktion. (Die Störfunktion ist der Term ohne “f”, welcher die DGL inhomogen macht). Viel Glück!


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Komplexe Zahlen; Kartesische Koordinaten; Polarform; Exponentialdarstellung, Beispiel 1 - A.54.01

Das "Konjugierte" eine komplexen Zahl erhält man, wenn man das Vorzeichen vom Imaginärteil ändert. Zeichnerisch erhält man die konjugierte Zahl, indem man die Ausgangszahl in die komplexe Zahlenebene einzeichnet und dann an der waagerechten Achse spiegelt. Es gibt drei wichtige Formen, in welcher man eine komplexe Zahl darstellen kann. 1) z=a+bi ist die "Normalform", oder "kartesische Darstellung" oder "kartesische Koordinaten" oder … 2) Schreibt man die komplexe Zahl in die Form z=r*e^(i*x) um, nennt man das "Polarform" oder "Polarkoordinate" oder "Exponentialdarstellung" oder … Hierbei ist "r" der "Betrag" der Zahl (ist Abstand der Zahl zum Ursprung, kann daher als Radius interpretiert werden) und "x" ist der Winkel der vom Ursprung aus zwischen der Zahl (einem Punkt in der Zahlenebene) und der x-Achse erscheint. Dieser Winkel Wird als "Argument" bezeichnet und eigentlich mit dem griechischen Buchstaben "phi" bezeichnet (nicht mit x). 3) die dritte Form ist die "trigonometrische Form", welche eine Mischung aus Polarform und kartesischer Form.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: So leitet man vermischte Funktionen ab | A.13.07

In den bisherigen Kapiteln haben wir hauptsächlich Polynome (“normale” Funktionen) abgeleitet. Meistens müssen Sie jedoch Funktionen ableiten, in denen Sinus, Kosinus, e-Funktionen, Wurzeln, ln, etc.. vermischt werden. Das üben wir an dieser Stelle.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Beispielaufgaben zu Nullstellen berechnen und Gleichungen lösen, Beispiel 5 | A.12.09

Hier gibt es ein paar vermischte Aufgaben zu den vorhergehenden Kapiteln, also zum Thema “Nullstellen” bzw. “Gleichungen lösen”.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Entfernung berechnen, Beispiel 3 - A.01.04

Entfernungen von zwei Punkten bestimmt man entweder über die Entfernungsformel berechnen: Abstand = Wurzel aus ((x2-x1)^2+(y2-y1 )^2) oder man zeichnet ein Steigungsdreieck ein und kann dann über Pythagoras die gewünschte Streckenlänge berechnen. Liegen die beiden Punkte nebeneinander oder übereinander, kann man Entfernung der beiden Punkte auch auslesen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Seitenhalbierende berechnen, Beispiel 1 | A.02.12

Wie berechnet man die Gleichung einer Seitenhalbierenden? Na ja, eine Seitenhalbierende geht durch einen Punkt und die Mitte der gegenüberliegenden Seite. Also bestimmt man den Mittelpunkt der gegenüberliegenden Seite (siehe A.01.01) und hat nun zwei Punkte, durch welche die Gerade geht. Nun kann man die Geradengleichung über die beiden Punkte bestimmen (siehe A.02.10 bzw. A.02.11). Übrigens berechnet man den Schnittpunkt von 2 oder 3 Seitenhalbierenden, so erhält man den Schwerpunkt des Dreiecks.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Mittelpunkt berechnen, Beispiel 4 | A.01.01

Den Mittelpunkt von zwei gegebenen Punkten berechnet man im Koordinatensystem sehr einfach. Man bestimmt die Mitte der x-Werte und die Mitte der y-Werte. (Man bestimmt z.B. die Mitte von zwei x-Werten, indem man die beiden x-Werte zusammenzählt und das Ergebnis durch 2 teilt).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Punkte und wie man mit ihnen rechnet | A.01

Egal, ob man Punkte, Geraden, Funktionen oder was auch immer im Koordinatensystem gegeben hat. Wenn man die irgendwie abändern will (spiegeln, verschieben, Abstände berechnen will, …) führt man das ganz häufig auf Theorien zurück, die man von Koordinaten von Punkten kennt. In diesem Kapitel berechnen wir Mittelpunkte, Steigungen, Abstände zwischen zwei Punkten und Spiegelpunkte.


Dieses Material ist Teil einer Sammlung