Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Wendetangente und Wendenormale bestimmen, Beispiel 6 | A.15.03

Eine Wendetangente oder eine Wendenormale ist einfach nur die Tangente oder die Normale mit dem Wendepunkt als Berührpunkt. Vorgehensweise: man berechnet den Wendepunkt und stellt dann hier die Tangente (oder die Normale) auf.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Tangente außerhalb, Beispiel 4 | A.15.04

Tangente von außen oder Tangente von außerhalb liegt vor, wenn der Berührpunkt der Tangente (oder Normale) NICHT gegeben ist. Dafür kennt man einen anderen Punkt, der auf der Tangente liegt. Vorgehensweise: man verwendet die Tangentenformel, setzt die Koordinaten dieses anderen Punktes für x und y ein und erhält nun eine Gleichung mit nur noch einer einzigen Unbekannten (“u”). Nun löst man die Gleichung nach “u” auf (welches der x-Wert des Berührpunktes ist). Nun hat man den Berührpunkt (oder mehrere) und kann ggf. in diesen Punkten wieder die Tangenten aufstellen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Tangente außerhalb, Beispiel 6 | A.15.04

Tangente von außen oder Tangente von außerhalb liegt vor, wenn der Berührpunkt der Tangente (oder Normale) NICHT gegeben ist. Dafür kennt man einen anderen Punkt, der auf der Tangente liegt. Vorgehensweise: man verwendet die Tangentenformel, setzt die Koordinaten dieses anderen Punktes für x und y ein und erhält nun eine Gleichung mit nur noch einer einzigen Unbekannten (“u”). Nun löst man die Gleichung nach “u” auf (welches der x-Wert des Berührpunktes ist). Nun hat man den Berührpunkt (oder mehrere) und kann ggf. in diesen Punkten wieder die Tangenten aufstellen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Mit Newton-Verfahren Nullstellen bestimmen, Beispiel 3 | A.32.02

Es gibt in Mathe viele Gleichungen, die sich nicht lösen lassen. Das Newton-Verfahren (auch: Newton-Iteration) verwendet man, um Nullstellen einer Gleichung zumindest näherungsweise zu bestimmen. Für die Newtoniteration gibt es eine Formel. In diese Formel setzt man einen (beliebigen) x-Wert ein und erhält als Ergebnis ein besseren x-Wert, also einen x-Wert der näher an der tatsächlichen Nullstelle liegt. Dieses Ergebnis setzt man abermals in die Formel ein und erhält einen noch besseren x-Wert. Das Ganze kann man beliebig oft wiederholen und erhält x-Werte die immer näher bei der tatsächlichen Nullstelle liegen. So ein Verfahren nennt man Iteration. Zwar hat das Newtonverfahren auch ein paar Macken, im Großen und Ganzen ist es jedoch wahrscheinlich das beste und schnellste Verfahren, um Gleichungen zu lösen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Stetigkeit und Differenzierbarkeit von abschnittsweise definierten Funktionen, Beispiel 6 | A.25.02

Eine Funktion ist “abschnittsweise definiert”, wenn bis zu einem x-Wert eine ganz bestimmte Funktion gilt, ab diesem x-Wert dann eine andere Funktion gilt. Abschnittsweise definierte Funktionen eignen sich hervorragend für Aufgabenstellungen zu Stetigkeit und Differenzierbarkeit.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Schaubild einer Ableitungsfunktion zeichnen / skizzieren, Beispiel 2 | A.27.03

Es gibt eine relativ gute Methode, das Schaubild einer Ableitungsfunktion zu zeichnen: man zeichnet in einem beliebigen Punkt eine Tangente und misst deren Steigung. Die Steigung der Tangente ist der y-Wert der Ableitungsfunktion. Leider ist diese Methode nicht die schnellste. Die Methode über die sogenannte “NEW”-Tabelle ist schneller, funktioniert aber bei manchen Schaubildern schlecht. Das Schaubild einer Stammfunktion zu zeichnen ist ein kleines bisschen umständlicher. Hier ein paar Beispiele zum Ableitung skizzieren und zum Stammfunktion skizzieren.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Aussagen zur Stammfunktion treffen anhand des Schaubildes der Ableitung, Beispiel 2 | A.27.04

Gegeben ist das Schaubild einer Ableitungsfunktion. Man muss nun bestimmte Aussagen über die Stammfunktion treffen. Manchmal sind auch ein paar Aussagen gegeben und man muss entscheiden, ob die wahr, falsch oder unentscheidbar sind. Man kann die Stammfunktion SKIZZIEREN (also die Ableitung grafisch aufleiten) oder man denkt ein bisschen um die Ecke.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Stetigkeit und Differenzierbarkeit der verschiedenen Funktionstypen | A.25.01

Je nachdem zu welchem Funktionstyp eine Funktion gehört, kann man schon Vermutungen über ihre Stetigkeit und Differenzierbarkeit anstellen. Polynome und Exponentialfunktionen sind im Normalfall immer stetig und differenzierbar. Hat eine Funktion einen Bruch, so gibt’s im Normalfall an der Stelle eine Definitionslücke (bzw. senkrechte Asymptote bzw. Polstelle bzw. Sprungstelle), an welcher der Nenner Null wird (dort ist also ein Unstetigkeitsstelle). Wurzel-Funktionen beginnen normalerweise in einem bestimmten Punkt des Koordinatensystems. Man berechnet diesen Punkt meist, indem man den Term UNTER der Wurzel Null setzt. Dieser Punkt ist (was Stetigkeit und Differenzierbarkeit betrifft) problematisch. Logarithmus-Funktionen haben ebenfalls “Problemzonen”, und zwar überall da, wo das Argument des Logarithmus [=das Innere der Klammer] Null oder negativ ist. Die Unstetigkeitsstelle ist bei der Nullstelle des Arguments.


Dieses Material ist Teil einer Sammlung