Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Kurvendiskussion von Kurvenscharen, Beispiel 3 | A.24.02

Wir behandeln hier verschiedene Fragestellungen, die spezifisch für eine Kurvenschar ist. Die eigentliche Funktionsanalyse (= Funktionsuntersuchung = Kurvendiskussion) machen wir hier nicht, wir übernehmen alle notwendigen Zwischenergebnisse aus Kapitel A.19


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Kurvendiskussion von Kurvenscharen, Beispiel 8 | A.24.02

Wir behandeln hier verschiedene Fragestellungen, die spezifisch für eine Kurvenschar ist. Die eigentliche Funktionsanalyse (= Funktionsuntersuchung = Kurvendiskussion) machen wir hier nicht, wir übernehmen alle notwendigen Zwischenergebnisse aus Kapitel A.19


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Punktprobe: so führt man sie richtig durch, Beispiel 2 - A.02.03

Wie prüft man, ob ein Punkt auf einer Gerade liegt? Sehr einfach: man macht eine Punktprobe, man setzt die also Koordinaten des Punktes in die Gerade ein. Also den x-Wert des Punktes setzt man für x ein, den y-Wert des Punktes setzt man in die Geradengleichung für y ein. Erhält man zum Schluss eine wahre Aussage (so was wie 0=0 oder 5=5 oder …) so liegt der Punkt auf der Gerade. anderenfalls liegt der Punkt nicht auf der Gerade.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Koordinaten: so kann man eine Koordinate berechnen, Beispiel 1 | A.02.04

Wie prüft man, ob ein Punkt auf einer Gerade liegt? Sehr einfach: man macht eine Punktprobe, man setzt die also Koordinaten des Punktes in die Gerade ein. Also den x-Wert des Punktes setzt man für x ein, den y-Wert des Punktes setzt man in die Geradengleichung für y ein. Erhält man zum Schluss eine wahre Aussage (so was wie 0=0 oder 5=5 oder …) so liegt der Punkt auf der Gerade. anderenfalls liegt der Punkt nicht auf der Gerade.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Koordinaten: so kann man eine Koordinate berechnen, Beispiel 3 - A.02.04

Wie prüft man, ob ein Punkt auf einer Gerade liegt? Sehr einfach: man macht eine Punktprobe, man setzt die also Koordinaten des Punktes in die Gerade ein. Also den x-Wert des Punktes setzt man für x ein, den y-Wert des Punktes setzt man in die Geradengleichung für y ein. Erhält man zum Schluss eine wahre Aussage (so was wie 0=0 oder 5=5 oder …) so liegt der Punkt auf der Gerade. anderenfalls liegt der Punkt nicht auf der Gerade.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Lineares Wachstum berechnen, Beispiel 3 | A.07.01

Lineares Wachstum kennzeichnet sich dadurch, dass immer die gleiche Menge dazu kommt (z.B. kriegt Karlchen jeden Tag 50Cent dazu). Es wird durch eine Gerade beschriebe, bloß verwendet man nicht die Buchstaben “y=m*x+b”, sondern es werden andere Buchstaben verwendet. Gängig ist B(t)=B(0)+m*t. Hierbei ist “B(0)” der Anfangswert, “B(t)” der Bestand nach Ablauf der Zeit “t” und “m” ist die Menge die pro Zeiteinheit konstant dazu kommt.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Geradengleichung bestimmen über Zwei-Punkte-Form ZPF, Beispiel 4 - A.02.10

Kennt man von einer Geraden zwei Punkte (durch welche die Gerade geht), kann man die Geradengleichung recht einfach bestimmen. Eine der Möglichkeiten wäre die Koordinaten der Punkte für "x1", "x2", "y1" und "y2" in die Zwei-Punkte-Form (ZPF oder 2PF) ein und löst nach "y" auf. Wie lautet die Gleichung der ZPF überhaupt? Es gibt mehrere Möglichkeiten dafür. Hier die beiden wichtigsten: a) "(y2-y1)/(x2-x1)=(y-y1)/(x-x1)" b) "y=(y2-y1)/(x2-x1)*(x-x1)+y1"


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Geradengleichung über Normalform aus zwei Punkten bestimmen, Beispiel 2 | A.02.11

Kennt man von einer Geraden zwei Punkte (durch welche die Gerade geht), kann man die Geradengleichung recht einfach bestimmen. Eine der Möglichkeiten wäre die Koordinaten der Punkte für “x” und “y” in die Geradengleichung: “y=m*x+b” ein. Durch das Einsetzen jedes Punktes erhält man je eine Gleichung (also ein Gleichungssystem mit “m” und “b” als Unbekannte). Zieht man die beiden Gleichungen von einander ab (man macht praktisch ein Subtraktionsverfahren vom LGS), erhält man “m” und danach auch “b”.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Winkel und Anstiegswinkel von Geraden berechnen, Beispiel 2 | A.02.15

Es gibt nur zwei Formeln, um Winkel zu berechnen. Die etwas hässlichere Formel finden Sie im nächsten Kapitel. Die einfachere Formel lautet “m=tan(alpha)”. Hierbei ist “m” die Steigung der Geraden und alpha immer der Winkel zwischen dieser Geraden und der x-Achse (oder einer anderen waagerechten Gerade). Diesen Winkel nennt man auch Anstiegswinkel. Will man den Schnittwinkel zwischen ZWEI Geraden berechnen, muss man für jede den Anstiegswinkel berechnen und diese dann zusammenzählen (oder abziehen, wenn beide Geraden steigen oder wenn beide fallen).


Dieses Material ist Teil einer Sammlung