Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Ortskurve, Ortslinie: was das ist und wie man damit rechnet, Beispiel 4 | A.24.01

Ortskurven (oder Ortslinien) gibt es nur bei Funktionsscharen (also wenn noch ein Parameter in der Funktion mit auftaucht). Was sind Ortskurven überhaupt? Eine Funktionenschar besteht aus unendlich vielen Funktionen (für jeden Wert des Parameters gibt’s eine Funktion). Alle Hochpunkte dieser Funktionen liegen auf einer neuen Kurve, nämlich der Ortskurve der Hochpunkte. Das Gleiche gilt natürlich auch für Tiefpunkte, Wendepunkte und Sonstiges. (Geschwollen formuliert: die Ortskurve aller Extrem- und Wendepunkte ist der “geometrische Ort aller Extrem- und Wendepunkte”.) Um eine Ortskurve zu bestimmen, braucht man zuerst die Koordinaten des entsprechenden Punktes in Abhängigkeit vom Parameter. Danach ist´s einfach: in der “x”-Gleichung nach dem Parameter auflösen und in die “y”-Gleichung einsetzen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Kurvendiskussion von Kurvenscharen mit CAS | A.24.03

Wir behandeln hier verschiedene Fragestellungen, die spezifisch für Kurvenscharen sind und lösen diese ausnahmslos mit dem CAS. Die eigentliche Funktionsanalyse (= Funktionsuntersuchung = Kurvendiskussion) machen wir hier nicht, wir übernehmen alle notwendigen Zwischenergebnisse aus Kapitel A.19


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Kurvendiskussion von Kurvenscharen mit CAS, Beispiel 2 | A.24.03

Wir behandeln hier verschiedene Fragestellungen, die spezifisch für Kurvenscharen sind und lösen diese ausnahmslos mit dem CAS. Die eigentliche Funktionsanalyse (= Funktionsuntersuchung = Kurvendiskussion) machen wir hier nicht, wir übernehmen alle notwendigen Zwischenergebnisse aus Kapitel A.19


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Kurvendiskussion von Kurvenscharen mit CAS, Beispiel 7 | A.24.03

Wir behandeln hier verschiedene Fragestellungen, die spezifisch für Kurvenscharen sind und lösen diese ausnahmslos mit dem CAS. Die eigentliche Funktionsanalyse (= Funktionsuntersuchung = Kurvendiskussion) machen wir hier nicht, wir übernehmen alle notwendigen Zwischenergebnisse aus Kapitel A.19


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Schaubild einer Ableitungsfunktion zeichnen / skizzieren, Beispiel 4 | A.27.03

Es gibt eine relativ gute Methode, das Schaubild einer Ableitungsfunktion zu zeichnen: man zeichnet in einem beliebigen Punkt eine Tangente und misst deren Steigung. Die Steigung der Tangente ist der y-Wert der Ableitungsfunktion. Leider ist diese Methode nicht die schnellste. Die Methode über die sogenannte “NEW”-Tabelle ist schneller, funktioniert aber bei manchen Schaubildern schlecht. Das Schaubild einer Stammfunktion zu zeichnen ist ein kleines bisschen umständlicher. Hier ein paar Beispiele zum Ableitung skizzieren und zum Stammfunktion skizzieren.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Schaubild einer Ableitungsfunktion zeichnen / skizzieren, Beispiel 6 | A.27.03

Es gibt eine relativ gute Methode, das Schaubild einer Ableitungsfunktion zu zeichnen: man zeichnet in einem beliebigen Punkt eine Tangente und misst deren Steigung. Die Steigung der Tangente ist der y-Wert der Ableitungsfunktion. Leider ist diese Methode nicht die schnellste. Die Methode über die sogenannte “NEW”-Tabelle ist schneller, funktioniert aber bei manchen Schaubildern schlecht. Das Schaubild einer Stammfunktion zu zeichnen ist ein kleines bisschen umständlicher. Hier ein paar Beispiele zum Ableitung skizzieren und zum Stammfunktion skizzieren.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Logarithmusfunktionen: Rechenbeispiele zur Funktionsanalyse, Beispiel 3 | A.44.09

Ein paar Beispiele von Funktionsuntersuchungen von Logarithmus-Funktionen. (Wir betrachten Nullstellen, Ableitungen, Extrem- und Wendepunkte, die Definitionsmenge, alle Asymptoten und fertigen eine Skizze.)


Dieses Material ist Teil einer Sammlung

Text

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Schaubild einer Wurzelfunktion erstellen | A.45.07

Wurzel-Funktionen zeichnet man über das asymptotische Verhalten an den Grenzen des Definitionsbereichs. Falls man Nullstellen oder Hoch-, Tief- oder Wendepunkte kennt, zeichnet man diese ebenfalls ein und sollte nun die Funktion zeichnen können. Falls notwendig, kann man noch eine Wertetabelle machen, also noch ein paar Punkte einzeichnen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Trigonometrische Funktionen: Erklärung der Grundfunktion f(x)=a·sin(b(x-c))+d | A.42.08

Durch Strecken und Verschieben von sin(x) und cos(x) kommt man auf die Grundfunktion der Form f(x)=a·sin(b(x-c))+d bzw. f(x)=a·cos(b(x-c))+d. Vermutlich sollten Sie wissen, welche Bedeutung die Parameter a, b, c, d haben. a = Amplitude = Streckung in y-Richtung, b=2*Pi/Periode=Stauchung in x-Richtung; c=Verschiebung in x-Richtung (bei sin: c=x-Wert des Wendepunkts mit positiver Steigung, bei cos: c=x-Wert des Hochpunkts), d=Mittellinie der Funktion=Verschiebung in y-Richtung


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Aus dem Schaubild einer trigonometrischen Funktion die Funktionsgleichung erstellen | A.42.10.

Es gibt einen Haufen periodischer Vorgänge in der Natur. Z.B. sieht man öfter die Aufgabe, dass monatliche Durchschnittstemperaturen angeben sind, diese werden als Punkte eingezeichnet und die Funktion kann eingezeichnet werden. Nun braucht man die Funktionsgleichung, die die Temperatur beschreibt. Wie geht man vor? Die waagerechte Mittellinie d liest man zuerst aus. Der Abstand hiervon zu den Hoch- bzw. Tiefpunkten ist die Amplitude a. Der Abstand zwischen zwei Tiefpunkten oder zwischen zwei Hochpunkten ist die Periode. Daraus kann man b bestimmen. Zum Schluss liest man c aus (welches der x-Wert vom Hochpunkt [bei cos] bzw. der x-Wert des Wendepunkts [bei sin] ist). Die Parameter setzt man in y=a·sin(b[x-c])+d ein.


Dieses Material ist Teil einer Sammlung