Video

Havonix Schulmedien-Verlag

Analysis 4 | die verschiedenen Funktionstypen, ihre Besonderheiten und wie man mit ihnen rechnet

Wie der Kapitelname schon vermuten lässt, betrachten wir hier die verschiedenen Funktionstypen mit ihren Besonderheiten. Speziell gehen wir auf sechs Funktionstypen ein: 1.Exponentialfunktionen (e-Funktionen), 2.Trigonometrische Funktionen (sin oder cos), 3.Gebrochen-rationale Funktionen (Bruch-Funktionen), 4.Logarithmus-Funktionen, 5.Wurzelfunktionen, 6.Ganzrationale Funktionen (Parabeln). Sie werden ziemlich sicher NICHT alle sechs Funktionstypen beherrschen müssen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Parabel mit Parameter berechnen, Beispiel 1 | A.04.19

Wenn in einer Parabelgleichung ein Parameter auftaucht (also zusätzlich zum “x” noch ein “t” oder “k” oder …), so spricht man von einer “Parabelschar” (man hat schließlich eine ganze Schar von Parabeln). Jede einzelne Parabel nennt man “Scharparabel” (eine Parabel aus dieser Schar). Die üblichen Fragen bei Parabelscharen sind Nullstellen (also y=0 setzen und nach “x” auflösen), irgendeine Punktprobe (man setzt also die Koordinaten von irgendeinem gegebenen Punkt ein und muss nach “t” auflösen), und ähnliches Zeug. Oft steckt der Parameter in der Mitternachtsformel (p-q-Formel oder a-b-c-Formel) unter der Wurzel und man muss entscheiden, ob es für die Fragestellung aus der Aufgabe keine/eine/zwei Lösungen gibt. Die Antwort hängt davon ab, was unter der Wurzel steht (das unter der Wurzel nennt man “Diskriminante”). Ist die Diskriminante positiv gibt es zwei Lösungen, ist sie negativ gibt es keine Lösung, ist sie genau Null so hat man eine Lösung. Gewöhnungsbedürftig, aber machbar.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Parabel mit Parameter berechnen, Beispiel 6 | A.04.19

Wenn in einer Parabelgleichung ein Parameter auftaucht (also zusätzlich zum “x” noch ein “t” oder “k” oder …), so spricht man von einer “Parabelschar” (man hat schließlich eine ganze Schar von Parabeln). Jede einzelne Parabel nennt man “Scharparabel” (eine Parabel aus dieser Schar). Die üblichen Fragen bei Parabelscharen sind Nullstellen (also y=0 setzen und nach “x” auflösen), irgendeine Punktprobe (man setzt also die Koordinaten von irgendeinem gegebenen Punkt ein und muss nach “t” auflösen), und ähnliches Zeug. Oft steckt der Parameter in der Mitternachtsformel (p-q-Formel oder a-b-c-Formel) unter der Wurzel und man muss entscheiden, ob es für die Fragestellung aus der Aufgabe keine/eine/zwei Lösungen gibt. Die Antwort hängt davon ab, was unter der Wurzel steht (das unter der Wurzel nennt man “Diskriminante”). Ist die Diskriminante positiv gibt es zwei Lösungen, ist sie negativ gibt es keine Lösung, ist sie genau Null so hat man eine Lösung. Gewöhnungsbedürftig, aber machbar.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Gleichung dritten Grades; Nullstellen kubische Parabel berechnen | A.05.01

Nullstellen einer kubischen Parabel (Gleichung dritten Grades) kann man eigentlich nur berechnen, in dem man “x” (oder evtl. “x²) ausklammert und den Satz vom Nullprodukt (SvN) anwendet. Danach ist höchstwahrscheinlich p-q-Formel bzw. a-b-c-Formel angesagt.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Lineares Wachstum berechnen, Beispiel 2 | A.07.01

Lineares Wachstum kennzeichnet sich dadurch, dass immer die gleiche Menge dazu kommt (z.B. kriegt Karlchen jeden Tag 50Cent dazu). Es wird durch eine Gerade beschriebe, bloß verwendet man nicht die Buchstaben “y=m*x+b”, sondern es werden andere Buchstaben verwendet. Gängig ist B(t)=B(0)+m*t. Hierbei ist “B(0)” der Anfangswert, “B(t)” der Bestand nach Ablauf der Zeit “t” und “m” ist die Menge die pro Zeiteinheit konstant dazu kommt.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Beschränktes Wachstum berechnen, Beispiel 1 | A.07.03

Begrenztes Wachstum (=beschränktes Wachstum) wächst am Anfang relativ schnell und nähert sich allmählich und immer langsamer einer Grenze (=Schranke), welche mit G oder S bezeichnet wird. Typische Beispiele für begrenztes Wachstum sind Erwärmungs- oder Abkühlungsvorgänge, Mischungsverhältnisse (z.B. irgendein Zeug löst sich in Wasser etc.. auf). Allgemein gilt für begrenztes Wachstum, dass immer ein konstanter Wert zum Bestand dazukommt und ein bestimmter Prozentwert weg geht. Die Funktionsgleichung vom begrenztes Wachstum lautet: f(t)=G+a*e^(-k*t). In einiges Aufgaben fällt das Wort “Sättigungsmanko”. Die Berechnung von begrenztem Wachstum erfolgt über eine Tabelle und Schritt für Schritt, d.h. aus einem Bestand berechnen wir den Bestand vom nächsten Tag/Jahr/Minute/..., daraus dann den übernächsten Bestand usw. Wir verwenden hierbei die Formel dB(t)=k*(G-B(t)), wobei B(t) der aktuelle Bestand ist, G die Grenze, k irgendein Wachstumsfaktor, dB(t) die Zunahme im aktuellen Zeitintervall. (In der Oberstufe/Studium erfolgt dann eine geschicktere Berechnung über e-Funktionen [Kap.A.30.05]) .


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Logistisches Wachstum berechnen, Beispiel 1 | A.07.04

Logistisches Wachstum beschreibt die meisten Wachstumsprozesse aus unserer Umwelt. Eigentlich wird fast jedes Wachstum welches irgendwie mit Lebewesen zu tun hat, durch logistisches Wachstum beschrieben. Das kann das Wachstum von Pflanzen sein, Bevölkerungswachstum, Entwicklung einer Population, etc.. Die Berechnung von logistischem Wachstum erfolgt über eine Tabelle und Schritt für Schritt, d.h. aus einem Bestand berechnen wir den Bestand vom nächsten Tag/Jahr/Minute/..., daraus dann den übernächsten Bestand usw. Wir verwenden hierbei die Formel dB(t)=k*B(t)*(G-B(t)), wobei B(t) der aktuelle Bestand ist, G die Grenze, k irgendein Wachstumsfaktor, dB(t) die Zunahme im aktuellen Zeitintervall. (In der Oberstufe/Studium erfolgt dann eine geschicktere Berechnung über e-Funktionen [Kap.A.30.07]) .


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Logistisches Wachstum berechnen, Beispiel 3 | A.07.04

Logistisches Wachstum beschreibt die meisten Wachstumsprozesse aus unserer Umwelt. Eigentlich wird fast jedes Wachstum welches irgendwie mit Lebewesen zu tun hat, durch logistisches Wachstum beschrieben. Das kann das Wachstum von Pflanzen sein, Bevölkerungswachstum, Entwicklung einer Population, etc.. Die Berechnung von logistischem Wachstum erfolgt über eine Tabelle und Schritt für Schritt, d.h. aus einem Bestand berechnen wir den Bestand vom nächsten Tag/Jahr/Minute/..., daraus dann den übernächsten Bestand usw. Wir verwenden hierbei die Formel dB(t)=k*B(t)*(G-B(t)), wobei B(t) der aktuelle Bestand ist, G die Grenze, k irgendein Wachstumsfaktor, dB(t) die Zunahme im aktuellen Zeitintervall. (In der Oberstufe/Studium erfolgt dann eine geschicktere Berechnung über e-Funktionen [Kap.A.30.07]) .


Dieses Material ist Teil einer Sammlung