Suchergebnis für: ** Zeige Treffer 1 - 10 von 1630

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Lineare Ungleichungen, Beispiel 6 | A.26.01

Eine lineare Ungleichung ist eine Ungleichung, in der nur “x” vorkommt. Kein “x²” oder höhere Potenzen, keine Brüche, keine Wurzeln, aber natürlich “Kleinerzeichen” oder ein “Größerzeichen”. Es handelt sich um eine recht einfache Angelegenheit. Alles, was ein “x” hat, kommt auf die linke Seite, alles ohne “x” auf die rechte Seite. Teilt man durch etwas Negatives, dreht sich das Ungleichheitszeichen um.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Lineare Ungleichungen, Beispiel 1 | A.26.01

Eine lineare Ungleichung ist eine Ungleichung, in der nur “x” vorkommt. Kein “x²” oder höhere Potenzen, keine Brüche, keine Wurzeln, aber natürlich “Kleinerzeichen” oder ein “Größerzeichen”. Es handelt sich um eine recht einfache Angelegenheit. Alles, was ein “x” hat, kommt auf die linke Seite, alles ohne “x” auf die rechte Seite. Teilt man durch etwas Negatives, dreht sich das Ungleichheitszeichen um.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Quadratische Ungleichungen, Beispiel 6 | A.26.02

Eine quadratische Ungleichung ist natürlich eine Ungleichung, in welcher “x²” vorkommt. Es gibt zwei gute Vorgehensweisen dafür. Entweder über die quadratische Ergänzung oder man bestimmt die Nullstellen der quadratischen Parabel, überlegt, wie die Parabel liegt und weiß damit, in welchem Bereich die Parabel positiv oder negativ ist.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Quadratische Ungleichungen, Beispiel 1 | A.26.02

Eine quadratische Ungleichung ist natürlich eine Ungleichung, in welcher “x²” vorkommt. Es gibt zwei gute Vorgehensweisen dafür. Entweder über die quadratische Ergänzung oder man bestimmt die Nullstellen der quadratischen Parabel, überlegt, wie die Parabel liegt und weiß damit, in welchem Bereich die Parabel positiv oder negativ ist.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Ungleichungen höherer Potenz, Beispiel 6 | A.26.03

Eine “höhere Ungleichung” oder besser eine “Ungleichung höherer Potenz” ist eine Ungleichung, in welcher höhere Potenzen von “x” auftauchen. Eigentlich gibt es nur eine gute Lösungsmöglichkeit:


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Mit Newton-Verfahren Nullstellen bestimmen, Beispiel 4 | A.32.02

Es gibt in Mathe viele Gleichungen, die sich nicht lösen lassen. Das Newton-Verfahren (auch: Newton-Iteration) verwendet man, um Nullstellen einer Gleichung zumindest näherungsweise zu bestimmen. Für die Newtoniteration gibt es eine Formel. In diese Formel setzt man einen (beliebigen) x-Wert ein und erhält als Ergebnis ein besseren x-Wert, also einen x-Wert der näher an der tatsächlichen Nullstelle liegt. Dieses Ergebnis setzt man abermals in die Formel ein und erhält einen noch besseren x-Wert. Das Ganze kann man beliebig oft wiederholen und erhält x-Werte die immer näher bei der tatsächlichen Nullstelle liegen. So ein Verfahren nennt man Iteration. Zwar hat das Newtonverfahren auch ein paar Macken, im Großen und Ganzen ist es jedoch wahrscheinlich das beste und schnellste Verfahren, um Gleichungen zu lösen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Achsenabschnitt und Achsenschnittpunkte (Nullstellen) berechnen, Beispiel 1 | A.04.10

Eine der sehr wichtigen Berechnungen bei Parabeln sind die Achsenschnittpunkte. Der Schnittpunkt mit der y-Achse heiß auch y-Achsenabschnitt. Man erhält diesen, in dem man x=0 in die Parabel einsetzt. Die Schnittpunkte mit der x-Achse heißen auch Nullstellen. Man erhält diese, in dem man die Parabelgleichung Null setzt und dann (meist die Mitternachtsformel anwendet, sprich p-q-Formel oder a-b-c-Formel). Je nach dem, was unter der Wurzel rauskommt, hat man keine/eine oder zwei Nullstellen.


Dieses Material ist Teil einer Sammlung

Text

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Funktionsanalyse einer Wurzelfunktion: Übungen und Beispiele, Beispiel 3 | A.45.09

Ein paar Beispiele von Funktionsuntersuchungen von Wurzel-Funktionen. (Wir betrachten Nullstellen, Ableitungen, Extrem- und Wendepunkte, die Definitionsmenge, alle Asymptoten und fertigen eine Skizze.)


Dieses Material ist Teil einer Sammlung