Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Differentialgleichung: Was ist eine DGL und wie rechnet man damit? Beispiel 2 | A.30.02

Eine Differenzialgleichung (kurz: DGL) ist eine Gleichung in welcher Ableitung und Funktion auftauchen. Eine DGL beschreibt daher einen Zusammenhang zwischen der Änderung des Bestands und dem Bestand selber.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Exponentielles Wachstum berechnen mit Differentialgleichung, Beispiel 3 | A.30.04

Die Differenzialgleichung vom exponentiellen Wachstum lautet: f'(t)=k*f(t) und sagt damit aus, dass die Änderung immer proportional zum Bestand ist (falls k=0,05, bedeutet das, dass die Zunahme immer 5% vom Bestand ist). Die Zahl “k” heißt Proportionalitätsfaktor oder Wachstumskonstante und taucht auch in der Funktionsgleichung vom exponentiellen Wachstum auf.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Exponentielles Wachstum berechnen mit Differentialgleichung, Beispiel 5 | A.30.04

Die Differenzialgleichung vom exponentiellen Wachstum lautet: f'(t)=k*f(t) und sagt damit aus, dass die Änderung immer proportional zum Bestand ist (falls k=0,05, bedeutet das, dass die Zunahme immer 5% vom Bestand ist). Die Zahl “k” heißt Proportionalitätsfaktor oder Wachstumskonstante und taucht auch in der Funktionsgleichung vom exponentiellen Wachstum auf.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Beschränktes Wachstum berechnen, Beispiel 2 | A.07.03

Begrenztes Wachstum (=beschränktes Wachstum) wächst am Anfang relativ schnell und nähert sich allmählich und immer langsamer einer Grenze (=Schranke), welche mit G oder S bezeichnet wird. Typische Beispiele für begrenztes Wachstum sind Erwärmungs- oder Abkühlungsvorgänge, Mischungsverhältnisse (z.B. irgendein Zeug löst sich in Wasser etc.. auf). Allgemein gilt für begrenztes Wachstum, dass immer ein konstanter Wert zum Bestand dazukommt und ein bestimmter Prozentwert weg geht. Die Funktionsgleichung vom begrenztes Wachstum lautet: f(t)=G+a*e^(-k*t). In einiges Aufgaben fällt das Wort “Sättigungsmanko”. Die Berechnung von begrenztem Wachstum erfolgt über eine Tabelle und Schritt für Schritt, d.h. aus einem Bestand berechnen wir den Bestand vom nächsten Tag/Jahr/Minute/..., daraus dann den übernächsten Bestand usw. Wir verwenden hierbei die Formel dB(t)=k*(G-B(t)), wobei B(t) der aktuelle Bestand ist, G die Grenze, k irgendein Wachstumsfaktor, dB(t) die Zunahme im aktuellen Zeitintervall. (In der Oberstufe/Studium erfolgt dann eine geschicktere Berechnung über e-Funktionen [Kap.A.30.05]) .


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Logistisches Wachstum berechnen, Beispiel 2 | A.07.04

Logistisches Wachstum beschreibt die meisten Wachstumsprozesse aus unserer Umwelt. Eigentlich wird fast jedes Wachstum welches irgendwie mit Lebewesen zu tun hat, durch logistisches Wachstum beschrieben. Das kann das Wachstum von Pflanzen sein, Bevölkerungswachstum, Entwicklung einer Population, etc.. Die Berechnung von logistischem Wachstum erfolgt über eine Tabelle und Schritt für Schritt, d.h. aus einem Bestand berechnen wir den Bestand vom nächsten Tag/Jahr/Minute/..., daraus dann den übernächsten Bestand usw. Wir verwenden hierbei die Formel dB(t)=k*B(t)*(G-B(t)), wobei B(t) der aktuelle Bestand ist, G die Grenze, k irgendein Wachstumsfaktor, dB(t) die Zunahme im aktuellen Zeitintervall. (In der Oberstufe/Studium erfolgt dann eine geschicktere Berechnung über e-Funktionen [Kap.A.30.07]) .


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Logarithmusfunktion: Gleichungen lösen | A.44.05

Die Gleichung, die einen Logarithmus enthält, löst man, in dem man nach dem Logarithmusterm auflöst. Eventuell muss man vorher noch “x” oder Ähnliches auflösen. Hat man dem ln(...) aufgelöst, muss man den ln wegkriegen. Dieses erreicht man, in dem man die andere Seite in die Hochzahl der einer Exponentialfunktion setzt. Aus ln(Ding)=Zahl folgt also: Ding=e^Zahl. Normalerweise kann man nun gut nach “x” auflösen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Logarithmusfunktion: Gleichungen lösen, Beispiel 5 | A.44.05

Die Gleichung, die einen Logarithmus enthält, löst man, in dem man nach dem Logarithmusterm auflöst. Eventuell muss man vorher noch “x” oder Ähnliches auflösen. Hat man dem ln(...) aufgelöst, muss man den ln wegkriegen. Dieses erreicht man, in dem man die andere Seite in die Hochzahl der einer Exponentialfunktion setzt. Aus ln(Ding)=Zahl folgt also: Ding=e^Zahl. Normalerweise kann man nun gut nach “x” auflösen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Exponentialfunktion: kurze Einführung in die e-Funktion | A.41

Eine Exponentialfunktion ist eine Funktion, in welcher die Unbekannte “x” in der Hochzahl steht. Die mit Abstand wichtigste Exponentialfunktion ist die e-Funktion, welche die Eulersche Zahl (also e=2,718...) als Basis hat.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Schaubild einer Exponentialfunktion erstellen, Beispiel 2 | A.41.09

Um das Schaubild einer Exponential-Funktion zu skizzieren oder zu zeichnen, kann man entweder eine ausführliche Wertetabelle machen oder man bestimmt die Asymptoten, eventuell noch Nullstellen, vielleicht berechnet man auch noch zu verschiedenen x-Werten die zugehörigen y-Werte. Das müsste ausreichen, um einen ordentlichen Graphen zu erstellen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Aus dem Schaubild einer Exponentialfunktion die Funktionsgleichung erstellen, Beispiel 3 | A.41.10.

Normalerweise hat man die gesuchte Funktion in Abhängigkeit von einem (oder mehreren) Parameter gegeben. Man sucht ein paar Punkte, die man gut aus dem Schaubild ablesen kann und setzt die in die Funktion ein. Eventuell man das auch mit Asymptoten machen. Damit sollte man die Parameter erhalten.


Dieses Material ist Teil einer Sammlung