Anderer Ressourcentyp

BR alpha

GRIPS Mathe: Der Satz des Pythagoras - GRIPS Mathe Lektion 29

Rechte Winkel spielen eine große Rolle im Alltag, das lernen die Schüler von Mathelehrer Basti Wohlrab praxisnah auf einer Baustelle. Bei der Wette, in welcher Höhe eine Leiter an der Wand lehnt, gewinnt Basti mit einer verdächtigen zentimetergenauen Antwort. Schritt für Schritt zeigt ihnen Basti den Trick: die Berechnung mithilfe des Satzes des Pythagoras. Damit können die Schüler bei einem rechtwinkeligen Dreieck Flächen und Strecken berechnen.Die Lektion besteht aus 1 Film, 2 Mediaboxen und 3 Texten.

Text

BR alpha

GRIPS Mathe: Lehrer-Informationen für den Unterricht - Der Satz des Pythagoras

Rechte Winkel spielen eine große Rolle in unserem Alltag, das lernen die Schüler von Mathelehrer Basti Wohlrab praxisnah auf einer Baustelle. Bei der Wette, in welcher Höhe eine Leiter an der Wand lehnt, gewinnt Basti mit einer verdächtigen zentimetergenauen Antwort. Schritt für Schritt zeigt ihnen Basti den Trick: Zuerst überlegen die Schüler anhand von Einheitsquadraten, welcher Zusammenhang zwischen den Quadraten über den Seiten eines rechtwinkeligen Dreieckes bestehen. Dann zeigt Basti, wie sich daraus der Satz des Pythagoras ableitet. Mit dem Pythagoras berechnet das Team Flächen und Strecken - und zum Schluss die genaue Anlegehöhe der Leiter.

Video

Havonix Schulmedien-Verlag

Wurzel von komplexen Zahlen ziehen, Beispiel 3 - A.54.06

Um Wurzeln aus komplexen Zahlen zu ziehen, sollten diese Polarform haben. (Ggf. muss man die Zahl also erst in Polarform umwandeln). Will man nun die n-te Wurzel aus einer Zahl ziehen, so ist der neue Betrag die n-te Wurzel aus dem alten Betrag. Das neue Argument (=Winkel) erhält man, in dem man das alte Argument durch n teilt. Leider ist das nur EINE Lösung und beim Wurzelziehen gibt es immer mehrere Lösungen. Es gibt genau "n" Lösungen. Alle weiteren Lösungen erhält man, in dem man den Vollkreis (also 360° oder 2Pi) durch n teilt. Das Ergebnis zählt man beliebig oft zum Winkel der ersten Lösung dazu, bis man "n" Lösungen hat.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Wurzel von komplexen Zahlen ziehen - A.54.06

Um Wurzeln aus komplexen Zahlen zu ziehen, sollten diese Polarform haben. (Ggf. muss man die Zahl also erst in Polarform umwandeln). Will man nun die n-te Wurzel aus einer Zahl ziehen, so ist der neue Betrag die n-te Wurzel aus dem alten Betrag. Das neue Argument (=Winkel) erhält man, in dem man das alte Argument durch n teilt. Leider ist das nur EINE Lösung und beim Wurzelziehen gibt es immer mehrere Lösungen. Es gibt genau "n" Lösungen. Alle weiteren Lösungen erhält man, in dem man den Vollkreis (also 360° oder 2Pi) durch n teilt. Das Ergebnis zählt man beliebig oft zum Winkel der ersten Lösung dazu, bis man "n" Lösungen hat.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Wurzel von komplexen Zahlen ziehen, Beispiel 2 | A.54.06

Um Wurzeln aus komplexen Zahlen zu ziehen, sollten diese Polarform haben. (Ggf. muss man die Zahl also erst in Polarform umwandeln). Will man nun die n-te Wurzel aus einer Zahl ziehen, so ist der neue Betrag die n-te Wurzel aus dem alten Betrag. Das neue Argument (=Winkel) erhält man, in dem man das alte Argument durch n teilt. Leider ist das nur EINE Lösung und beim Wurzelziehen gibt es immer mehrere Lösungen. Es gibt genau “n” Lösungen. Alle weiteren Lösungen erhält man, in dem man den Vollkreis (also 360° oder 2Pi) durch n teilt. Das Ergebnis zählt man beliebig oft zum Winkel der ersten Lösung dazu, bis man “n” Lösungen hat.


Dieses Material ist Teil einer Sammlung