Video

Havonix Schulmedien-Verlag

Wurzeln multiplizieren: so berechnet man ein Wurzelprodukt | B.04.01

Wenn man Wurzeln miteinander multipliziert, so nennt man das “Wurzelprodukt”. Das ist sehr schön. Man schreibt eigentlich nur die Wurzeln um (als Hochzahl hat man dann eben Brüche) und wendet irgendwelche Potenzregeln an. Wenn es Wurzeln vom gleichen Typ sind (also z.B. man hat überall nur dritte Wurzeln), kann man auch alles unter EINE Wurzel schreiben und dann unter der Wurzel vereinfachen


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Wurzeln dividieren: so berechnet man den Wurzelquotient, Beispiel 2 | B.04.02

Teilt man eine Wurzel durch eine andere, so nennt man das “Wurzelquotient”. Das ist sehr schön. Wie beim Produkt von Wurzeln auch, schreibt man die Wurzeln um (als Hochzahl hat man Brüche) und wendet irgendwelche Potenzregeln an. Wenn es Wurzeln vom gleichen Typ sind (also z.B. man hat überall nur dritte Wurzeln), kann man auch alles unter EINE Wurzel schreiben und dann unter der Wurzel vereinfachen


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Wurzel der Wurzel: Wie rechnet man, wenn eine Wurzel unter der Wurzel steht? Beispiel 3 | B.04.03

Hat man eine Wurzel unter der Wurzel (verschachtelte Wurzeln), ist das nicht immer einfach. Wenn unter der großen Wurzel nur Punktrechnungen stehen, ist alles in Butter. Man schreibt jede Wurzel als Potenz um und wendet die Potenzregel an. Sind unter der großen Wurzel auch Strichrechnungen, nutzt vermutlich auch alles Umschreiben nichts mehr, vermutlich lässt sich kaum was vereinfachen :-(


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Wurzelfunktion ableiten | A.45.01

Um eine Wurzel abzuleiten, muss man sie umschreiben. Die normale Wurzel schreibt um, zu einer Klammer mit der Hochzahl “0,5”. Nun wendet man die Kettenregel an und kann differenzieren (ableiten). (Die Berechnung der Definitionsmenge ist zwingend erforderlich.)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Ableitung von komplizierten Wurzelfunktionen, Beispiel 1 | A.45.02

Bei hässlichen Ableitungen, die eine Wurzel enthalten, braucht man vermutlich eine der Ableitungsregeln, also die Produktregel oder evtl. Quotientenregel. Ziemlich sicher muss man die Wurzel auch noch umschreiben und dann mittels Kettenregel ableiten.


Dieses Material ist Teil einer Sammlung

Text

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Schaubild einer Wurzelfunktion erstellen | A.45.07

Wurzel-Funktionen zeichnet man über das asymptotische Verhalten an den Grenzen des Definitionsbereichs. Falls man Nullstellen oder Hoch-, Tief- oder Wendepunkte kennt, zeichnet man diese ebenfalls ein und sollte nun die Funktion zeichnen können. Falls notwendig, kann man noch eine Wertetabelle machen, also noch ein paar Punkte einzeichnen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Integrieren von komplizierten Wurzelfunktionen | A.45.04

Bei hässlichen Stammfunktionen, die eine Wurzel enthalten, braucht man meist die Substitution oder die Produktintegration (partielle Integration). Ziemlich sicher muss man die Wurzel auch noch umschreiben und dann mittels Kettenregel integrieren.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Wurzelfunktion: Wurzelgleichungen lösen, Beispiel 1 | A.45.05

Wurzelgleichungen löst man zuerst nach der Wurzel auf. Danach sollte man quadrieren man und sollte nach “x” auflösen können um so die Nullstelle zu erhalten. So weit die Theorie. Tja, die ein oder andere Gleichung ist vielleicht etwas komplizierter (nur minimal komplizierter).


Dieses Material ist Teil einer Sammlung

Text

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Aus dem Schaubild einer Wurzelfunktion die Funktionsgleichung erstellen, Beispiel 3 | A.45.08

Beim Zeichnen von Wurzelfunktionen, ist der “Anfangspunkt” wichtig. Nennen wir den Punkt R mit den Koordinaten R(r|s). Zeigt das Schaubild der Wurzel nach rechts, so ist der Ansatz: f(x)=a·wurzelaus(x-r)+s. Zeigt das Schaubild der Wurzel nach links, so ist der Ansatz: f(x)=a·wurzelaus(-x+r)+s. Den Parameter “a” erhält man, indem man einen beliebigen Punkt einsetzt.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Gleichungen lösen, nach x auflösen, Beispiel 3 - A.12.02

Gleichungen auflösen bzw. nach x auflösen: Enthält eine Gleichung einen einzigen Buchstaben "x", kann man immer nach diesem auflösen, ganz gleich, wie hässlich die Gleichung ist.


Dieses Material ist Teil einer Sammlung