Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Geradengleichung der Höhe berechnen, Beispiel 3 | A.02.13

Wie berechnet man die Gleichung einer Höhe? Eine Höhe steht senkrecht auf einer Dreiecksseite und geht durch den gegenüber liegenden Punkt. Dadurch, dass die Höhe senkrecht auf der Dreiecksseite steht, kann man ihre Steigung berechnen (man berechnet zuerst die Steigung der Dreiecksseite, davon nimmt man den negativen Kehrwert, denn dadurch, dass beide senkrecht aufeinander stehen verwendet man die Theorie von orthogonalen Geraden: die Steigung der einen Gerade ist der negative Kehrwert der anderen). Mit der Steigung der Höhe und dem gegenüber liegenden Punkt bestimmt man nun die Geradengleichung der Höhe (A.02.08 und A.02.09).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Winkel und Anstiegswinkel von Geraden berechnen | A.02.15

Es gibt nur zwei Formeln, um Winkel zu berechnen. Die etwas hässlichere Formel finden Sie im nächsten Kapitel. Die einfachere Formel lautet “m=tan(alpha)”. Hierbei ist “m” die Steigung der Geraden und alpha immer der Winkel zwischen dieser Geraden und der x-Achse (oder einer anderen waagerechten Gerade). Diesen Winkel nennt man auch Anstiegswinkel. Will man den Schnittwinkel zwischen ZWEI Geraden berechnen, muss man für jede den Anstiegswinkel berechnen und diese dann zusammenzählen (oder abziehen, wenn beide Geraden steigen oder wenn beide fallen).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Schnittwinkel von Geraden berechnen | A.02.16

Es gibt nur zwei Formeln, um Winkel zu berechnen. Die eine Formel, die wir hier behandeln, sieht zwar nicht ganz einfach aus, hat den großen Vorteil, dass die Rechnungen sehr einfach werden. Die Formel lautet “tan(alpha)=(m2-m1)/(1+m1*m2)”. Hierbei sind “m1” und “m2” die Steigungen der beiden Geraden. Man setzt “m1” und “m2” in die Formel ein und erhält den Schnittwinkel “alpha”.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Geraden, Gerade berechnen: Übungsaufgaben und Rechenbeispiele, Beispiel 3 | A.02.21

Wir stellen die Gleichungen von drei Geraden auf, von denen man unterschiedliche Angaben hat und damit Verschiedenes weiß. Die erste Winkelhalbierende ist von Bedeutung, wir brauchen einen Schnittpunkt und einen Schnittwinkel.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Achsparallele Flächen berechnen, Beispiel 2 | A.03.01

Falls eine Dreieckfläche oder eine Rechteckfläche mindestens eine Seite hat, die parallel zu einer der Koordinatenachsen ist, wählt man diese Seite als Grundlinie. Die Länge der Grundlinie kann man anhand der Koordinaten der Endpunkte ablesen. Die Höhe steht senkrecht auf der Grundlinie. Die Länge der Höhe kann man ebenfalls ablesen. Nun kann man über die Formel A=½*g*h (beim Dreieck) oder A=g*h (beim Rechteck) den Flächeninhalt berechnen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Achsparallele Flächen berechnen, Beispiel 4 | A.03.01

Falls eine Dreieckfläche oder eine Rechteckfläche mindestens eine Seite hat, die parallel zu einer der Koordinatenachsen ist, wählt man diese Seite als Grundlinie. Die Länge der Grundlinie kann man anhand der Koordinaten der Endpunkte ablesen. Die Höhe steht senkrecht auf der Grundlinie. Die Länge der Höhe kann man ebenfalls ablesen. Nun kann man über die Formel A=½*g*h (beim Dreieck) oder A=g*h (beim Rechteck) den Flächeninhalt berechnen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Fläche eines Dreiecks mit umschriebenen Rechtecken berechnen | A.03.03

Eine recht intuitive Möglichkeit eine Dreiecksfläche im Koordinatensystem zu berechnen, kann man anwenden, wenn die Koordinaten der Eckpunkte ganzzahlig sind, dann kann man dem Dreieck nämlich ein Rechteck umschreiben. 1.Man spannt ein Rechteck um das Dreieck, so dass alle Seiten des Rechtecks parallel zur x-Achse und zur y-Achse sind und alle drei Eckpunkte des Dreiecks irgendwo auf dem Rechteck liegen. Nun entstehen außerhalb des gesuchten Dreiecks drei rechtwinklige Dreiecke. 2.Die Flächen dieser rechtwinkligen Dreiecke sind recht einfach zu berechnen. Man zieht diese Flächen von der Rechteckfläche ab und hat den gesuchten Flächeninhalt. Hört sich schlimmer an als es ist.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Fläche und Flächeninhalt eines Dreiecks mit Flächeninhaltsformel berechnen, Beispiel 3 | A.03.04

Es gibt tatsächlich auch eine stupide Formel für Dreiecksflächen. Stupid im Sinne von: man muss bei dieser Flächeninhaltsformel nichts denken. Man setzt einfach nur die Koordinaten der Eckpunkte des Dreiecks ein und erhält die Dreiecksfläche. Die Formel für die Fläche lautet: A=½*[x1*(y2-y3)+x2*(y3-y1)+x3*(x1-y2)]. Hierbei sind (x1|y1), (x2|y2) und (x3|y3) die Koordinaten der Eckpunkte des Dreiecks (die Reihenfolge spielt keine Rolle).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Normalparabel zeichnen, Beispiel 3 | A.04.02

Eine Normalparabel kann man natürlich zeichnen, in dem man eine Wertetabelle erstellt, die Punkte einzeichnet und dann zu einer Parabelform verbindet. (Mit der Methode kann man alle Funktionen und alle Parabeln zeichnen). Geschickter ist es jedoch, den Scheitelpunkt zu berechnen (siehe z.B. Kap.A.04.04) und dann von diesem Scheitelpunkt aus die Normalparabel aus zu zeichnen. Das macht man entweder mit einer Schablone oder man muss halt wissen wie die Form einer Normalparabel aussieht (siehe Beispielfilme). Steht vor dem “x²” ein Minus, ist die Normalparabel nach unten geöffnet, steht von dem “x²” ein Plus, ist sie nach oben geöffnet.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Parabelformen: Normalform, Scheitelform, Linearfaktorform LFF, Beispiel 6 | A.04.03

Parabeln gibt es in drei Formen: 1) die häufigste und wichtigste ist die “allgemeine Form” oder “Normalform” y=ax²+bx+c 2) die Scheitelform verwendet man, wenn der Scheitelpunkt gegeben ist oder man den Scheitelpunkt braucht y=a*(x-xs)²+ys [xs und ys sind hierbei die x- und y-Koordinaten des Scheitelpunkts] 3) die Linearfaktorform verwendet man manchmal, wenn es um die Nullstellen der Parabel geht. y=a*(x-x1)(x-x2) [hierbei sind x1 und x2 die Nullstellen der Parabel]. Sie sollten die drei Parabelformen beherrschen (vor allem die ersten beiden) und wissen, wie man die eine in die andere umwandelt.


Dieses Material ist Teil einer Sammlung