Text

Prof. Dr. Jürgen Roth

DynaGeo: "Abwicklung der Kosinusfunktion"

Hier werden einige interaktive Konstruktionen angeboten, die mit Hilfe der dynamischen Geometriesoftware (DGS) EUKLID DynaGeo erstellt wurden. Die Materialien eignen sich für verschiedene Themengebiete und Klassenstufen.

Text

Prof. Dr. Jürgen Roth

Die Zahl i - phantastisch, praktisch, anschaulich

Wie kann ein geometrisch ausgerichteter Zugang zu den komplexen Zahlen aussehen? Historisch gesehen haben sich die komplexen Zahlen erst wirklich durchgesetzt, als mit der Gaußschen Zahlenebene eine geometrische Interpretation vorlag. Für eine anschauliche Einführung in die komplexen Zahlen für Schülerinnen und Schüler einer 10. Klasse bietet sich ein geometrisch ausgerichteter Zugang an. Ausgangspunkt ist die Fragestellung ob es einen über die reellen Zahlen hinausgehenden Zahlbereich gibt, in dem z. B. die Gleichung x2 = − 1 gelöst werden kann, der den Zahlbereich der reellen Zahlen enthält und in dem die bekannten Rechenregeln weiterhin gültig sind (Permanenzprinzip). Mathematisch gesehen geht es um die Frage, ob die Körperaxiome erfüllt sind und der Körper der reellen Zahlen ein Teilkörper dieses neuen Körpers ist. Die hier verfolgte Idee besteht darin, den anschaulichen, zum Körper der reellen Zahlen isomorphen Körper der reellen Zeiger zu betrachten und ihn auf der anschaulichen Ebene geeignet zu erweitern.

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Parallelität von Geraden, Beispiel 1 | A.02.06

Sind zwei Geraden parallel, so haben sie die gleiche Steigung. Stehen zwei Geraden senkrecht aufeinander, so ist die Steigung der einen der negative Kehrwert der anderen Steigung. (Also wenn die eine Steigung 5 ist, so ist die andere Steigung -1/5). Man nennt die Steigungen dann auch “negativ reziprok”.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Parabelformen: Normalform, Scheitelform, Linearfaktorform LFF, Beispiel 5 - A.04.03

Parabeln gibt es in drei Formen: 1) die häufigste und wichtigste ist die "allgemeine Form" oder "Normalform" y=ax²+bx+c 2) die Scheitelform verwendet man, wenn der Scheitelpunkt gegeben ist oder man den Scheitelpunkt braucht y=a*(x-xs)²+ys [xs und ys sind hierbei die x- und y-Koordinaten des Scheitelpunkts] 3) die Linearfaktorform verwendet man manchmal, wenn es um die Nullstellen der Parabel geht. y=a*(x-x1)(x-x2) [hierbei sind x1 und x2 die Nullstellen der Parabel]. Sie sollten die drei Parabelformen beherrschen (vor allem die ersten beiden) und wissen, wie man die eine in die andere umwandelt.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Scheitelpunkt berechnen über quadratische Ergänzung und Scheitelform, Beispiel 3 - A.04.04

Die Scheitelform einer Parabel lautet: y=a*(x-xs)²+ys. Hierbei sind xs und ys die x- und y-Koordinaten des Scheitelpunktes, a ist der Streckfaktor [bei Normalparabel a=1 oder a=-1]. Hat man die Normalform der Parabel gegeben und will den Scheitelpunkt berechnen, wendet man die quadratische Ergänzung an, um auf die Scheitelform zu kommen. Aus der Scheitelform liest man dann den Scheitelpunkt einfach ab.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Parallelität von Geraden, Beispiel 3 | A.02.06

Sind zwei Geraden parallel, so haben sie die gleiche Steigung. Stehen zwei Geraden senkrecht aufeinander, so ist die Steigung der einen der negative Kehrwert der anderen Steigung. (Also wenn die eine Steigung 5 ist, so ist die andere Steigung -1/5). Man nennt die Steigungen dann auch “negativ reziprok”.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Schnittpunkt von Geraden berechnen, Beispiel 3 | A.02.07

Will man zwei Funktionen schneiden, muss man die gleich setzen und nach “x” auflösen. Man setzt den erhaltenen x-Wert in eine der beiden Funktionen ein, um den y-Wert vom Schnittpunkt zu erhalten.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Geradengleichung der Höhe berechnen | A.02.13

Wie berechnet man die Gleichung einer Höhe? Eine Höhe steht senkrecht auf einer Dreiecksseite und geht durch den gegenüber liegenden Punkt. Dadurch, dass die Höhe senkrecht auf der Dreiecksseite steht, kann man ihre Steigung berechnen (man berechnet zuerst die Steigung der Dreiecksseite, davon nimmt man den negativen Kehrwert, denn dadurch, dass beide senkrecht aufeinander stehen verwendet man die Theorie von orthogonalen Geraden: die Steigung der einen Gerade ist der negative Kehrwert der anderen). Mit der Steigung der Höhe und dem gegenüber liegenden Punkt bestimmt man nun die Geradengleichung der Höhe (A.02.08 und A.02.09).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Winkel und Anstiegswinkel von Geraden berechnen, Beispiel 4 | A.02.15

Es gibt nur zwei Formeln, um Winkel zu berechnen. Die etwas hässlichere Formel finden Sie im nächsten Kapitel. Die einfachere Formel lautet “m=tan(alpha)”. Hierbei ist “m” die Steigung der Geraden und alpha immer der Winkel zwischen dieser Geraden und der x-Achse (oder einer anderen waagerechten Gerade). Diesen Winkel nennt man auch Anstiegswinkel. Will man den Schnittwinkel zwischen ZWEI Geraden berechnen, muss man für jede den Anstiegswinkel berechnen und diese dann zusammenzählen (oder abziehen, wenn beide Geraden steigen oder wenn beide fallen).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Winkel und Anstiegswinkel von Geraden berechnen, Beispiel 6 | A.02.15

Es gibt nur zwei Formeln, um Winkel zu berechnen. Die etwas hässlichere Formel finden Sie im nächsten Kapitel. Die einfachere Formel lautet “m=tan(alpha)”. Hierbei ist “m” die Steigung der Geraden und alpha immer der Winkel zwischen dieser Geraden und der x-Achse (oder einer anderen waagerechten Gerade). Diesen Winkel nennt man auch Anstiegswinkel. Will man den Schnittwinkel zwischen ZWEI Geraden berechnen, muss man für jede den Anstiegswinkel berechnen und diese dann zusammenzählen (oder abziehen, wenn beide Geraden steigen oder wenn beide fallen).


Dieses Material ist Teil einer Sammlung