Video, Website

BR alpha

Prüfungstipps (Mediabox)

Im fünften Teil gibt Sebastian Wohlrab zunächst einige Tipps, wie man Rechenfehler vermeiden kann Anschließend erklärt er zusammen mit seinem Team, wie man das Ergebnis einer Gleichung übeprüfen kann. Die Mediabox umfasst 12 Stationen: Film: Wie können Fehler vermieden werden?, Film: So kannst du Fehler vermeiden, Info: So vermeidest du Fehler, Film: Wie kann man das Ergebnis kontrollieren?, Übung 1: Mache die Probe, Film: Die Probe, Info: Die Probe, Film: Zusammenfassung, Übung 2: Überprüfe das Ergebnis, Übung 2: Die Probe, Übung 2: Gleichung lösen, Übung 2: Die Probe mit 3.

Video, Website

BR alpha

Prüfungstraining: Dezimalbrüche und Maßeinheiten (Mediabox)

Der vierte Teil führt vor, wie man Dezimalbrüche fehlerfrei addiert oder subtrahiert, und erläutert, was bei Zahlen mit verschiedenen Maßeinheiten zu beachten ist. Die Mediabox umfasst 11 Stationen: Film: Auch Dachboxen werden getestet, Übung 1: Löse die Gleichung nach x auf, Film: Marius macht einen Fehler, Film: So subtrahierst du die Dezimalbrüche richtig, Info: Dezimalbrüche richtig subtrahieren, Film: Maßeinheiten umrechnen, Überlege: Wie viel kg sind 10g?, Film: Auch Profis machen Fehler, Film: Maßeinheiten umrechnen, Übung 2: Berechne das Ergebnis in Gramm, Übung 3: Berechne das Ergebnis in Kilogramm.

Video, Website

BR alpha

Prüfungstraining: Klammern auflösen (Mediabox)

Im dritten Teil werden Klammern aufgelöst. Wie man einen Faktor vor bzw. hinter einer Klammer mit jedem Glied in der Klammer multipliziert, wird wiederholt. Die Mediabox umfasst 11 Stationen: Film: Crashtest-Dummys, Film: Wie löse ich eine Klammer auf?, Übung 1: Klammer auflösen, Film: Marius macht einen Fehler, Info: Fehler beim Auflösen der Klammer, Film: So wird die Klammer richtig aufgelöst, Info: Klammer richtig auflösen, Film: Gleichung lösen, Info: Zusammenfassung, Übung 2: Gleichung lösen, Lösung zu Übung 2.

Video

Havonix Schulmedien-Verlag

Inhomogene Differentialgleichung über partikuläre Lösung lösen, Beispiel 1 | A.53.05

Bei einer inhomogenen DGL höherer Ordnung macht man zwei Schritte (beide sind lang). Im ersten Schritt löst man die zugehörige homogene DGL. Die zugehörige Lösung ist der erste Teil der Gesamtlösung. Im zweiten Schritt versucht man die “spezielle Lösung” oder “partikuläre Lösung” zu finden. Diese ist meistens vom gleichen Typ, wie die Störfunktion. (Die Störfunktion ist der Term ohne “f”, welcher die DGL inhomogen macht). Viel Glück!


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

DGL höherer Ordnung über charakteristisches Polynom lösen, Beispiel 1 | A.53.04

Bei einer homogenen DGL höherer Ordnung sind die Lösungen des charakteristischen Polynoms entscheidend. Das charakteristische Polynom erhält man, in dem man in der DGL f' durch x ersetzt, f'' durch x^2, f''' durch x^3, usw. Diese Gleichung löst man (oft nicht einfach) und betrachtet die Lösungen. Der Lösungsansatz hängt von zwei Faktoren ab: 1. ist die Lösung des charakteristischen Polynoms reell oder komplex? und 2. ist die Lösung einfach, doppelt, dreifach...


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Lineare, homogene Differentialgleichung mit Trennung der Variablen lösen, Beispiel 3 - A.53.02

Betrachten wir den Fall, dass NUR die DGL gegeben ist (also KEINE Funktion). Den einfachsten Fall einer DGL hat man, wenn die DGL homogen und linear ist (also die Form hat: a·y'+b·y=0, wobei a und b durchaus von x abhängen können). Nun schreibt man y' um zu: "dy/dx", multipliziert die gesamte Gleichung mit "dx" und versucht nun auch im Folgenden, alle "x" auf eine Seite der Gleichung zu bringen, alle "y" auf die andere Seite der Gleichung. Im zweiten Schritt integriert man beide Seiten der Gleichung (die Integrationskonstante "+c" nicht vergessen!). Im Normalfall kann man nun nach y auflösen. Falls eine Anfangsbedingung gegeben ist (ein "x"-Wert und ein zugehöriger "y"-Wert) kann man diese in die Funktion einsetzen und erhält die Integrationskonstante "c" bestimmen. Dieses Verfahren nennt sich "Trennung der Variablen" oder "Variablentrennung".


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Inhomogene Differentialgleichung über partikuläre Lösung lösen, Beispiel 5 | A.53.05

Bei einer inhomogenen DGL höherer Ordnung macht man zwei Schritte (beide sind lang). Im ersten Schritt löst man die zugehörige homogene DGL. Die zugehörige Lösung ist der erste Teil der Gesamtlösung. Im zweiten Schritt versucht man die “spezielle Lösung” oder “partikuläre Lösung” zu finden. Diese ist meistens vom gleichen Typ, wie die Störfunktion. (Die Störfunktion ist der Term ohne “f”, welcher die DGL inhomogen macht). Viel Glück!


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Lineare, inhomogene Differentialgleichung DGL lösen | A.53.03

Eine lineare inhomogene DGL hat die Form a·y'+b·y=c (a, b, c sind nicht zwingend Zahlen, sondern hängen von “x” ab). Im ersten Schritt bestimmt man die Lösung der zugehörigen homogenen DGL (man setzt also c=0) (?Kap.4.3.2). Im zweiten Schritt ersetzt man die Integrationskonstante “c” durch eine Funktion “c(x)”. Nun setzt man die gesamte Lösung (mitsamt c(x)) in die DGL ein und erhält nach einer Weile die Funktion “c(x)”. (Oft braucht man zwischendrin für die Integration die “Produktintegration” oder “Integration durch Substitution”.)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Lineare, homogene Differentialgleichung mit Trennung der Variablen lösen | A.53.02

Betrachten wir den Fall, dass NUR die DGL gegeben ist (also KEINE Funktion). Den einfachsten Fall einer DGL hat man, wenn die DGL homogen und linear ist (also die Form hat: a·y'+b·y=0, wobei a und b durchaus von x abhängen können). Nun schreibt man y' um zu: “dy/dx”, multipliziert die gesamte Gleichung mit “dx” und versucht nun auch im Folgenden, alle “x” auf eine Seite der Gleichung zu bringen, alle “y” auf die andere Seite der Gleichung. Im zweiten Schritt integriert man beide Seiten der Gleichung (die Integrationskonstante “+c” nicht vergessen!). Im Normalfall kann man nun nach y auflösen. Falls eine Anfangsbedingung gegeben ist (ein “x”-Wert und ein zugehöriger “y”-Wert) kann man diese in die Funktion einsetzen und erhält die Integrationskonstante “c” bestimmen. Dieses Verfahren nennt sich “Trennung der Variablen” oder “Variablentrennung”.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Tangentialebene: Tangente einer mehrdimensionalen Funktion, Beispiel 3 | A.51.03

Eine Tangente ist bei einer Funktion mit mehreren Variablen keine Gerade, sondern eine Tangentialebene oder ein Tangentialraum (Letzteres brauchen Sie vermutlich nie). Es gibt recht viele Ansätze und Formeln dafür, die jedoch letztendlich alle auf das Gleiche führen. In jedem Fall braucht man die partiellen (ersten) Ableitungen der Funktion. Wir verwenden eine recht einfache Formel zur Berechnung.


Dieses Material ist Teil einer Sammlung