Text

Prof. Dr. Jürgen Roth

DynaMa: Die Reise - eine kleine Irrfahrt

Hier werden einige interaktive Konstruktionen angeboten, die mit Hilfe der dynamischen Geometriesoftware (DGS) EUKLID DynaGeo erstellt wurden. Die Materialien eignen sich für verschiedene Themengebiete und Klassenstufen.

Text

MatheGuru

Grenzwerte

Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. Hier erfahren Lehrer und Schüler alles Wichtige über Grenzwerte.

Text

Prof. Dr. Jürgen Roth

DynaGeo: Extremwertprobleme

Hier werden einige interaktive Konstruktionen angeboten, die mit Hilfe der dynamischen Geometriesoftware (DGS) EUKLID DynaGeo erstellt wurden. Die Materialien eignen sich für verschiedene Themengebiete und Klassenstufen.

Text

MatheGuru

Quotientenregel

Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. An dieser Stelle geht es um die Quotientenregel.

Bild, Simulation, Text, Website

Alzheimer Forschung Initiative e.V.

Das Gehirn - Wie funktioniert das Gehirn?

Dieser Comic erklärt anhand des Fangen eines Balls den (groben) Aufbau und die Funktion des Gehirns.

Anderer Ressourcentyp, Text

MatheGuru

Riemann-Integral

Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. Das Riemann-Integral ist eine Methode zur numerischen Integration. An dieser Stelle wird es erklärt.

Text

MatheGuru

Summenregel

Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. Die Summenregel ist eine der grundlegendsten Regeln der Differentialrechung. Hier finden Sie den Beweis und Beispiele.