Text

BR alpha

GRIPS Mathe: Umgekehrt proportionale Zuordnungen (Quali-Aufgaben) - Umgekehrt proportionale Zuordnungen

Bei den Quali-Aufgaben auf dieser Seite geht es um umkehrt proportionale Zuordnungen. Bei umgekehrt proportionalen Zuordnungen wird dem Doppelten, Dreifachen... einer Größe, die Hälfte, eine Drittel... einer anderen Größe zugeordnet.

Text

BR alpha

GRIPS Mathe: Lineare Funktion mit Anfangswert - Proportionale Zuordnungen

Beginnt der Graph einer linearen Funktion nicht bei null, sondern auf der y-Achse weiter oben, bedeutet das, dass er einen Anfangswert besitzt. Ein Beispiel folgt.

Text

BR alpha

GRIPS Mathe: Lehrer-Informationen für den Unterricht - Proportionale Zuordnungen

Die Handyrechnung ist zu hoch? Mathelehrer Basti Wohlrab Zeigt seinen Schülern, wie sie verschiedene Handytarife vergleichen. Mathematisch sind dies lineare oder nicht-lineare Funktionen. Basti zeigt, wie Wir zeigen dir, wie man diese Funktionen graphisch darstellt und wie man mit und ohne Anfangswert rechnet. Im zweiten Teil werden die Minutenpreise unter die Lupe genommen. Das geht mithilfe des Zweisatzes, Dreisatzes oder Graphen.

Anderer Ressourcentyp

BR alpha

GRIPS Mathe: Umgekehrt proportionale Zuordnungen - GRIPS Mathe Lektion 32

Basti Wohlrab und seine Schüler haben ein ganz besonders dringendes Problem: Vor der Grillparty zum Fußball-Länderspiel muss noch ein Stapel Flyer verteilt werden. Ob das noch bis Spielbeginn zu schaffen ist? Mathelehrer Basti zeigt, wie man mithilfe von umgekehrt-proportionalen Zuordnungen die Arbeitsleistung unterschiedlicher Teams berechnen kann. Die Schüler lösen die Aufgabe auf zwei Arten - einmal mithilfe einer Wertetabelle und einmal grafisch. Die Lektion besteht aus 1 Film, 2 Mediaboxen und 5 Texten.

Anderer Ressourcentyp

BR alpha

GRIPS Mathe: Volumen Pyramide und Kegel - GRIPS Mathe Lektion 24

Mathelehrer Sebastian Wohlrab, Matthias und Stina wollen für ihre Party eine Bar bauen mit Pyramiden und Eckpfeilern und gehen dazu in eine Schreinerei. Dort lernen sie wie man das Volumen von Pyramiden und Kegeln berechnet. Im Umschüttversuch entdecken sie den konstanten 1/3-Zusammenhang von Spitzkörpern zu Quader und Zylinder und stellen die Volumen-Formeln zu Pyramide und Kegel auf. Mit Sand, Sägespänen und Wasser messen sie unterschiedliche Dichten und berechnen damit, wie schwer die Pyramide sandgefüllt wäre. Die Eckpfosten für die Bar sind kompliziertere Körper mit einer Spitze. In der Dreherei entstehen die spitzen Pfosten in Aluminium und daran zeigt Basti, wie diese in mehrere einfacher zu berechnende Körper unterteilt werden können. Ob die Schüler sich die Eckpfosten auch in Gold leisten können, zeigt sich bei der Berechnung der Masse. Die Lektion besteht aus 1 Film, 2 Mediaboxen, 7 Texten und 1 Übung.