Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Parallelität von Geraden, Beispiel 2 | A.02.06

Sind zwei Geraden parallel, so haben sie die gleiche Steigung. Stehen zwei Geraden senkrecht aufeinander, so ist die Steigung der einen der negative Kehrwert der anderen Steigung. (Also wenn die eine Steigung 5 ist, so ist die andere Steigung -1/5). Man nennt die Steigungen dann auch “negativ reziprok”.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Parallelität von Geraden, Beispiel 4 | A.02.06

Sind zwei Geraden parallel, so haben sie die gleiche Steigung. Stehen zwei Geraden senkrecht aufeinander, so ist die Steigung der einen der negative Kehrwert der anderen Steigung. (Also wenn die eine Steigung 5 ist, so ist die andere Steigung -1/5). Man nennt die Steigungen dann auch “negativ reziprok”.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: So löst man Extremwertaufgaben | A.21.01

Meist kann man folgendermaßen vorgehen: man schaut, was überhaupt maximal werden muss (z.B. könnte das eine Dreiecksfläche sein). Die Formel für diese Größe sucht man aus der Formelsammlung raus (z.B. bei der Dreiecksfläche: A=½·g·h). Nun ist das große Ziel, in dieser Formel nur noch EINE Unbekannte drin zu haben. Wie erreicht man das? Man hat immer noch eine weitere Information gegeben (z.B. der Umfang des Dreieck ist gegeben oder ein Eckpunkt liegt auf der Funktion oder...). Diese Information (welche “Nebenbedingung” heißt), verwendet man irgendwie (je nach Aufgabenstellung) und hat dann irgendwann mal die Ausgangsformel (in unserem Beispiel: die Dreiecksfläche) in Abhängigkeit von nur noch einer einzigen Variablen da stehen (Nun heißt diese Formel “Zielfunktion”). Ab jetzt ist es einfach: Ableiten und Null setzen (oder falls man einen GTR/CAS verwenden darf: einfach Maximum bestimmen).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Extremwertaufgaben im Alltag: Zylinder in einer Kugel, Volumen einer Schachtel, Beispiel 4 | A.21.02

Bei einigen Typen von Extremwertaufgaben sind keine Funktionen im Spiel. (Z.B. steckt ein Zylinder in einer Kugel, der dann maximales Volumen haben soll. Oder das Volumen einer Schachtel soll maximal werden, die aus einem Karton gebastelt wird oder …). Es geht also um Anwendungen aus dem “Alltag”. Ich nenne diese reale Anwendungen, aber eigentlich haben sie keinen richtigen, offiziellen Namen. Übrigens vereinfacht bei diesen Aufgaben sehr häufig der Strahlensatz die Rechnung sehr stark. (Also: Strahlensatz am Start?!?)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Extremwertaufgaben im Alltag: Zylinder in einer Kugel, Volumen einer Schachtel, Beispiel 6 | A.21.02

Bei einigen Typen von Extremwertaufgaben sind keine Funktionen im Spiel. (Z.B. steckt ein Zylinder in einer Kugel, der dann maximales Volumen haben soll. Oder das Volumen einer Schachtel soll maximal werden, die aus einem Karton gebastelt wird oder …). Es geht also um Anwendungen aus dem “Alltag”. Ich nenne diese reale Anwendungen, aber eigentlich haben sie keinen richtigen, offiziellen Namen. Übrigens vereinfacht bei diesen Aufgaben sehr häufig der Strahlensatz die Rechnung sehr stark. (Also: Strahlensatz am Start?!?)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Extremwertaufgabe Dreieck / Viereck: maximale Fläche berechnen, Beispiel 4 | A.21.03

Eine der häufig auftauchenden Extremwertaufgaben: Man muss die maximale Fläche eines Dreiecks oder die maximale Fläche eines Rechtecks bestimmen, wobei ein Eckpunkt (oder zwei) auf einer vorgegebenen Funktion liegt. Man verwendet die Formel A=½·g·h bzw. A=a·b. Eine der Seiten ist meist eine waagerechte Strecke (die man als Differenz der x-Werte berechnet), die andere Seite ist meist senkrecht (wird also als Differenz der y-Werte berechnet). Dieses in die Formel einsetzen und schon ist die Aufgabe halb gelöst.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Volumen Kegel und Volumen Zylinder berechnen, Beispiel 1 | A.21.05

Einen Kegel erhält man, wenn ein Dreieck um eine Seite rotiert, einen Zylinder erhält man, wenn ein Rechteck um eine der Seiten rotiert. Ein Kegelvolumen berechnet man über: V=pi/3*r²*h, ein Zylindervolumen berechnet man über V=pi*r²*h. Man braucht also in beiden Fällen den Radius und die Höhe. Beides sind im Normalfall waagerechte oder senkrechte Strecken, welche man also über die Differenz der x-Werte bzw. der y-Werte berechnet. Alles wird in die Volumenformel eingesetzt und das Maximum/Minimum berechnet. Schwuppdiwupp ist der größte Kegel (bzw. der größte Zylinder) da.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Schnittwinkel zwischen Funktionen, die sich berühren bzw. schneiden, Beispiel 1 | A.22.01

Bei der gegenseitigen Lage von zwei Funktionen (gilt natürlich auch für Lage von Funktion und Gerade) sind zwei Fälle besonders interessant und tauchen häufig auf. In beiden Fällen kann man zwei Gleichungen aufstellen (so dass in der Aufgabe zwei Unbekannte auftauchen können). Erstens: beide Funktionen berühren sich. In diesem Fall sind y-Werte und Steigungen gleich. (Es gilt also: f(x)=g(x) und f'(x)=g'(x)). Zweitens: beide Funktionen stehen senkrecht aufeinander (stehen also orthogonal aufeinander bzw. bilden einen 90°-Winkel). In diesem Fall sind beide y-Werte gleich und beide Steigungen sind negativ reziprok zueinander (=negativer Kehrwert). (Es gilt also: f(x)=g(x) und f'(x)*g'(x)=-1).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Umkehrfunktion zeichnen / Schaubild der Umkehrfunktion, Beispiel 3 | A.28.02

Das Schaubild einer Umkehrfunktion erstellt man aus der ursprünglichen Funktion durch Spiegelung an der ersten Winkelhalbierenden (y=x). (Man vertauscht also x-Werte und y-Werte”.)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Umkehrfunktion zeichnen / Schaubild der Umkehrfunktion, Beispiel 8 | A.28.02

Das Schaubild einer Umkehrfunktion erstellt man aus der ursprünglichen Funktion durch Spiegelung an der ersten Winkelhalbierenden (y=x). (Man vertauscht also x-Werte und y-Werte”.)


Dieses Material ist Teil einer Sammlung