Video

Havonix Schulmedien-Verlag

Tangente außerhalb, Beispiel 4 | A.15.04

Tangente von außen oder Tangente von außerhalb liegt vor, wenn der Berührpunkt der Tangente (oder Normale) NICHT gegeben ist. Dafür kennt man einen anderen Punkt, der auf der Tangente liegt. Vorgehensweise: man verwendet die Tangentenformel, setzt die Koordinaten dieses anderen Punktes für x und y ein und erhält nun eine Gleichung mit nur noch einer einzigen Unbekannten (“u”). Nun löst man die Gleichung nach “u” auf (welches der x-Wert des Berührpunktes ist). Nun hat man den Berührpunkt (oder mehrere) und kann ggf. in diesen Punkten wieder die Tangenten aufstellen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Tangente außerhalb, Beispiel 6 | A.15.04

Tangente von außen oder Tangente von außerhalb liegt vor, wenn der Berührpunkt der Tangente (oder Normale) NICHT gegeben ist. Dafür kennt man einen anderen Punkt, der auf der Tangente liegt. Vorgehensweise: man verwendet die Tangentenformel, setzt die Koordinaten dieses anderen Punktes für x und y ein und erhält nun eine Gleichung mit nur noch einer einzigen Unbekannten (“u”). Nun löst man die Gleichung nach “u” auf (welches der x-Wert des Berührpunktes ist). Nun hat man den Berührpunkt (oder mehrere) und kann ggf. in diesen Punkten wieder die Tangenten aufstellen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Asymptote und Grenzwert berechnen | A.16

Asymptoten sind Geraden, an welche sich Funktionen annähern. Man kann einerseits senkrechte Asymptoten berechnen, und mit einer anderen Rechnung kann man waagerechte bzw. schiefe Asymptote berechnen. Das Ziel der Asymptotenberechnung ist zu erfahren, wie sich Funktionen im Unendlichen verhalten. Ganzrationale Funktionen (Polynome) haben nie eine Asymptote. Waagerechte oder schiefe Asymptoten sind mehr oder weniger das Gleiche wie ein Grenzwert.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Senkrechte Asymptote berechnen, Beispiel 7 | A.16.01

Man kann senkrechte Asymptoten berechnen, wenn man den Nenner Null setzt (sofern man einen Bruch und damit einen Nenner hat) oder in dem man das Argument (=das Innere der Klammer) von einem Logarithmus (sofern vorhanden) Null setzt.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Waagrechte Asymptote und schiefe Asymptote berechnen, Beispiel 2 | A.16.02

Waagerechte Asymptoten bzw. schiefe Asymptoten erhält man, in dem man “x” in der Funktion gegen + oder - unendlich streben lässt. Wie das im Detail geht, hängt vom Funktionstyp ab. (Siehe daher bitte auf Querverweise auf die verschiedenen Funktionen unter “verwandte Themen”).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Waagrechte Asymptote und schiefe Asymptote berechnen, Beispiel 4 | A.16.02

Waagerechte Asymptoten bzw. schiefe Asymptoten erhält man, in dem man “x” in der Funktion gegen + oder - unendlich streben lässt. Wie das im Detail geht, hängt vom Funktionstyp ab. (Siehe daher bitte auf Querverweise auf die verschiedenen Funktionen unter “verwandte Themen”).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Symmetrie von ganzrationalen Funktionen bestimmen, Beispiel 1 | A.17.01

Symmetrie von ganzrationalen Funktionen (Polynomen) erkennt man sehr einfach an den Hochzahlen: Gibt es nur gerade Hochzahlen, so ist die Funktion achsensymmetrisch zur y-Achse. Gibt es nur ungerade Hochzahlen, so ist f(x) punktsymmetrisch zum Ursprung. Gibt es gemischte Hochzahlen, so ist f(x) weder zum Ursprung, noch zur y-Achse symmetrisch.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Symmetrie einer Funktion mit Formel berechnen | A.17.03

Ist eine Funktion punktsymmetrisch zu irgendeinem Symmetriepunkt S(a|b), so gilt die Formel: f(a-x)+f(a+x)=2b. Ist eine Funktion achsensymmetrisch zu irgendeiner senkrechten Symmetrieachse x=a, so gilt die Formel: f(a-x)=f(a+x).