Text

BR alpha

GRIPS Mathe: So stellst du Formeln um - Volumen, Kegel und Pyramide

Nicht immer steht in Mathe die gesuchte Größe alleine auf einer Seite der Formel. Wenn die gesuchte Größe nicht alleine auf einer Seite der Formel steht, dann muss man die Formel umstellen, um die unbekannte Größe (Variable) herauszubekommen.

Anderer Ressourcentyp

BR alpha

GRIPS Mathe: Volumen Pyramide und Kegel - GRIPS Mathe Lektion 24

Mathelehrer Sebastian Wohlrab, Matthias und Stina wollen für ihre Party eine Bar bauen mit Pyramiden und Eckpfeilern und gehen dazu in eine Schreinerei. Dort lernen sie wie man das Volumen von Pyramiden und Kegeln berechnet. Im Umschüttversuch entdecken sie den konstanten 1/3-Zusammenhang von Spitzkörpern zu Quader und Zylinder und stellen die Volumen-Formeln zu Pyramide und Kegel auf. Mit Sand, Sägespänen und Wasser messen sie unterschiedliche Dichten und berechnen damit, wie schwer die Pyramide sandgefüllt wäre. Die Eckpfosten für die Bar sind kompliziertere Körper mit einer Spitze. In der Dreherei entstehen die spitzen Pfosten in Aluminium und daran zeigt Basti, wie diese in mehrere einfacher zu berechnende Körper unterteilt werden können. Ob die Schüler sich die Eckpfosten auch in Gold leisten können, zeigt sich bei der Berechnung der Masse. Die Lektion besteht aus 1 Film, 2 Mediaboxen, 7 Texten und 1 Übung.

Text

BR alpha

GRIPS Mathe: Wie berechnest du das Gewicht von Körpern? - Volumen, Kegel und Pyramide

Um das Gewicht eines Körpers herauszubekommen, muss man mit der Dichte rechnen. Doch was ist Dichte überhaupt?

Anderer Ressourcentyp

BR alpha

GRIPS Mathe: Geometrische Grundbegriffe - GRIPS Mathe Lektion 26

Mathelehrer Basti Wohlrab zeigt seinen Schülern bei einer mathematischen Schnitzeljagd durch München, dass geometrische Körper wie Pyramiden und Quader überall im Alltag vorkommen. Basti beginnt mit den wichtigsten Flächen und untersucht dann mit den Schülern die Merkmale von geometrischen Körpern. Geometrischer Körper oder nicht? Die Schüler begeben sich auf Fototour und bewerten dann ihre Schnappschüsse - von Mülleimern, Dächern und Stützsäulen bis hin zu Kuchenstücken und Wurstbrötchen.Die Lektion besteht aus 1 Film, 2 Mediaboxen und 3 Texten.

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mehrdimensionale Funktion: Extrempunkte berechnen, Beispiel 1 | A.51.02

Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. Das Überprüfen in der zweiten Ableitung (“Hesse-Matrix”) geht nach einem vorgegebenen Schema (wird im Hauptfilm erläutert).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mehrdimensionale Funktion: Extrempunkte berechnen, Beispiel 3 | A.51.02

Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. Das Überprüfen in der zweiten Ableitung (“Hesse-Matrix”) geht nach einem vorgegebenen Schema (wird im Hauptfilm erläutert).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mehrdimensionale Funktion: Extrempunkte berechnen, Beispiel 2 | A.51.02

Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. Das Überprüfen in der zweiten Ableitung (“Hesse-Matrix”) geht nach einem vorgegebenen Schema (wird im Hauptfilm erläutert).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mehrdimensionale Funktion: Extrempunkte berechnen, Beispiel 5 | A.51.02

Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. Das Überprüfen in der zweiten Ableitung (“Hesse-Matrix”) geht nach einem vorgegebenen Schema (wird im Hauptfilm erläutert).


Dieses Material ist Teil einer Sammlung