Suchergebnis für: ** Zeige Treffer 1 - 10 von 829

Arbeitsblatt

Christian Schiffner, Hannah Tischer

SIKORE hilft, die Kopfrechenfertigkeiten zu verbessern

SIKORE hilft Lernwilligen, die Kopfrechenfertigkeiten zu verbessern. Kettenaufgabenkönnen erzeugt und sofort online gelöst werden. Mit nur wenigen Mausklicks werden weiterhin kostenlose Aufgabenblätter zum Ausdrucken erstellt. Die Schwierigkeitsstufe ist frei wählbar.

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mehrdimensionale Funktion: Extrempunkte berechnen, Beispiel 1 | A.51.02

Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. Das Überprüfen in der zweiten Ableitung (“Hesse-Matrix”) geht nach einem vorgegebenen Schema (wird im Hauptfilm erläutert).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mehrdimensionale Funktion: Extrempunkte berechnen, Beispiel 2 | A.51.02

Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. Das Überprüfen in der zweiten Ableitung (“Hesse-Matrix”) geht nach einem vorgegebenen Schema (wird im Hauptfilm erläutert).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mehrdimensionale Funktion: Extrempunkte berechnen, Beispiel 3 | A.51.02

Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. Das Überprüfen in der zweiten Ableitung (“Hesse-Matrix”) geht nach einem vorgegebenen Schema (wird im Hauptfilm erläutert).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mehrdimensionale Funktion: Extrempunkte berechnen | A.51.02

Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. Das Überprüfen in der zweiten Ableitung (“Hesse-Matrix”) geht nach einem vorgegebenen Schema (wird im Hauptfilm erläutert).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mehrdimensionale Funktion: Extrempunkte berechnen, Beispiel 5 | A.51.02

Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. Das Überprüfen in der zweiten Ableitung (“Hesse-Matrix”) geht nach einem vorgegebenen Schema (wird im Hauptfilm erläutert).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mehrdimensionale Funktion: Extrempunkte berechnen, Beispiel 4 | A.51.02

Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. Das Überprüfen in der zweiten Ableitung (“Hesse-Matrix”) geht nach einem vorgegebenen Schema (wird im Hauptfilm erläutert).


Dieses Material ist Teil einer Sammlung

Arbeitsblatt, Bild, Text, Unterrichtsplanung, Website

Logo creative commons

COMPASS Projekt, Pädagogische Hochschule Freiburg

Artenvielfalt

Die Vereinten Nationen haben 2010 zum "Internationalen Jahr der Artenvielfalt” erklärt, um auf den weltweit akut drohenden Verlust der biologischen Vielfalt von Tieren und Pflanzen aufmerksam zu machen. Nach Schätzungen sterben täglich 130 Arten aus. Die Sicherung der biologischen Vielfalt gehört zu den großen Herausforderungen des 21. Jahrhunderts. Am Beispiel der Populationsentwicklung der Graugänse in den Niederlanden gewinnen die Schülerinnen und Schüler mit dieser Aufgabe einen Einblick in Themen der Biodiversität. Unter anderem beschäftigen sie sich mit folgenden Fragestellungen: Was ist biologische Vielfalt? Wie kann sie erfasst werden? Warum muss und wie kann biologische Vielfalt erhalten werden?

Video

Havonix Schulmedien-Verlag

Mathe-Seite.de: Themenübersicht Oberstufe

Diese Liste zeigt alle Themen der gymnasialen Oberstufe. Zu jedem Unterkapitel - zum Beispiel: [A.12.04] Mitternachtsformel - gibt es Videos mit Beispielaufgaben, die Schritt für Schritt durchgerechnet und sehr verständlich erklärt werden.


Dieses Material ist Teil einer Sammlung

Arbeitsblatt, Bild, Text, Unterrichtsplanung, Website

Logo creative commons

COMPASS Projekt, Pädagogische Hochschule Freiburg

Gefährliche Kälte

Warum ist es für uns so wichtig, möglichst immer die richtige Temperatur beizubehalten? Um in heißen oder kalten Umgebungen überleben zu können und sich wohl zu fühlen, müssen Menschen und Tiere die Wärme, die sie aufnehmen oder abgeben, kontrollieren. Um diesen Vorgang besser zu verstehen, ist es wichtig zu begreifen, was Wärme, Temperatur und das thermische Gleichgewicht genau sind und wie sie in Beziehung zueinander stehen. Diese Unterrichtseinheit verwendet den Begriff "Fluss" in Systeme hinein und aus ihnen heraus und stellt so einen Vergleich zur Bewegung von Wasser her, um anhand dieser Analogie das thermische Gleichgewicht zu erklären. In einigen Unterrichtsstunden in Mathematik und Physik verwenden die Schülerinnen und Schüler kleine Programme und einfache Experimente, um ihre Kenntnis und ihr Verständnis dieser Schlüsselbegriffe aufzubauen. Anschließend werden diese Ideen in einer Fallstudie zur Prävention einer Unterkühlung angewandt.