Video, Website

BR alpha

Prüfungstipps (Mediabox)

Im fünften Teil gibt Sebastian Wohlrab zunächst einige Tipps, wie man Rechenfehler vermeiden kann Anschließend erklärt er zusammen mit seinem Team, wie man das Ergebnis einer Gleichung übeprüfen kann. Die Mediabox umfasst 12 Stationen: Film: Wie können Fehler vermieden werden?, Film: So kannst du Fehler vermeiden, Info: So vermeidest du Fehler, Film: Wie kann man das Ergebnis kontrollieren?, Übung 1: Mache die Probe, Film: Die Probe, Info: Die Probe, Film: Zusammenfassung, Übung 2: Überprüfe das Ergebnis, Übung 2: Die Probe, Übung 2: Gleichung lösen, Übung 2: Die Probe mit 3.

Video, Website

BR alpha

Prüfungstraining: Dezimalbrüche und Maßeinheiten (Mediabox)

Der vierte Teil führt vor, wie man Dezimalbrüche fehlerfrei addiert oder subtrahiert, und erläutert, was bei Zahlen mit verschiedenen Maßeinheiten zu beachten ist. Die Mediabox umfasst 11 Stationen: Film: Auch Dachboxen werden getestet, Übung 1: Löse die Gleichung nach x auf, Film: Marius macht einen Fehler, Film: So subtrahierst du die Dezimalbrüche richtig, Info: Dezimalbrüche richtig subtrahieren, Film: Maßeinheiten umrechnen, Überlege: Wie viel kg sind 10g?, Film: Auch Profis machen Fehler, Film: Maßeinheiten umrechnen, Übung 2: Berechne das Ergebnis in Gramm, Übung 3: Berechne das Ergebnis in Kilogramm.

Video, Website

BR alpha

Prüfungstraining: Klammern auflösen (Mediabox)

Im dritten Teil werden Klammern aufgelöst. Wie man einen Faktor vor bzw. hinter einer Klammer mit jedem Glied in der Klammer multipliziert, wird wiederholt. Die Mediabox umfasst 11 Stationen: Film: Crashtest-Dummys, Film: Wie löse ich eine Klammer auf?, Übung 1: Klammer auflösen, Film: Marius macht einen Fehler, Info: Fehler beim Auflösen der Klammer, Film: So wird die Klammer richtig aufgelöst, Info: Klammer richtig auflösen, Film: Gleichung lösen, Info: Zusammenfassung, Übung 2: Gleichung lösen, Lösung zu Übung 2.

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mehrdimensionale Funktion: Extrempunkte berechnen, Beispiel 1 | A.51.02

Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. Das Überprüfen in der zweiten Ableitung (“Hesse-Matrix”) geht nach einem vorgegebenen Schema (wird im Hauptfilm erläutert).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mehrdimensionale Funktion: Extrempunkte berechnen, Beispiel 3 | A.51.02

Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. Das Überprüfen in der zweiten Ableitung (“Hesse-Matrix”) geht nach einem vorgegebenen Schema (wird im Hauptfilm erläutert).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mehrdimensionale Funktion: Extrempunkte berechnen | A.51.02

Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. Das Überprüfen in der zweiten Ableitung (“Hesse-Matrix”) geht nach einem vorgegebenen Schema (wird im Hauptfilm erläutert).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mehrdimensionale Funktion: Extrempunkte berechnen, Beispiel 5 | A.51.02

Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. Das Überprüfen in der zweiten Ableitung (“Hesse-Matrix”) geht nach einem vorgegebenen Schema (wird im Hauptfilm erläutert).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mehrdimensionale Funktion: Extrempunkte berechnen, Beispiel 2 | A.51.02

Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. Das Überprüfen in der zweiten Ableitung (“Hesse-Matrix”) geht nach einem vorgegebenen Schema (wird im Hauptfilm erläutert).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mehrdimensionale Funktion: Extrempunkte berechnen, Beispiel 4 | A.51.02

Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. Das Überprüfen in der zweiten Ableitung (“Hesse-Matrix”) geht nach einem vorgegebenen Schema (wird im Hauptfilm erläutert).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Gleichungen | Wie kann man eine Gleichung lösen? Welche Lösungsverfahren gibt es dafür?

Gleichungen sind mit eines der wichtigsten Werkzeuge, die der Mathematik zur Verfügung stehen. Es gibt viele Standardverfahren, um solche Gleichungen zu lösen. Einige davon zeigen wir Ihnen hier, damit sie nicht mehr vor so vielen unlösbaren Problemen stehen. Damit hilft dieses Kapitel Ihnen mit geringerer Wahrscheinlichkeit von der Brücke zu springen, nur weil Sie eine Gleichung nicht nach “x” (oder einer anderen Variable) auflösen können. Viel Erfolg beim Lernen :-)


Dieses Material ist Teil einer Sammlung