Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Berechnung Dreieck: Fläche und Flächeninhalt Dreieck berechnen | A.03.02

Der Lösungsweg, den man am häufigsten sieht, verwendet die Formel A=½*g*h. Irgendeine der drei Seiten wählt man als Grundlinie. Die Länge der Grundlinie bestimmt man über den Abstand der beiden Endpunkte (Abstand Punkt-Punkt). Um die Höhe zu berechnen, berechnet man erst die Steigung der Grundlinie. Die Steigung der Höhe ist nun der negative Kehrwert der Grundliniensteigung. Zusammen mit den Koordinaten des gegenüberliegenden Eckpunktes kann man die Geradengleichung der Höhe bestimmen. Diese Lotgerade schneidet man mit der Gleichung der Grundlinie (die man natürlich ebenfalls bestimmen muss). Der Schnittpunkt ist der Lotfußpunkt. Der Abstand vom Lotfußpunkt zum gegenüberliegenden Eckpunkt ist die Länge der Höhe.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Achsparallele Flächen berechnen, Beispiel 2 | A.03.01

Falls eine Dreieckfläche oder eine Rechteckfläche mindestens eine Seite hat, die parallel zu einer der Koordinatenachsen ist, wählt man diese Seite als Grundlinie. Die Länge der Grundlinie kann man anhand der Koordinaten der Endpunkte ablesen. Die Höhe steht senkrecht auf der Grundlinie. Die Länge der Höhe kann man ebenfalls ablesen. Nun kann man über die Formel A=½*g*h (beim Dreieck) oder A=g*h (beim Rechteck) den Flächeninhalt berechnen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Achsparallele Flächen berechnen, Beispiel 4 | A.03.01

Falls eine Dreieckfläche oder eine Rechteckfläche mindestens eine Seite hat, die parallel zu einer der Koordinatenachsen ist, wählt man diese Seite als Grundlinie. Die Länge der Grundlinie kann man anhand der Koordinaten der Endpunkte ablesen. Die Höhe steht senkrecht auf der Grundlinie. Die Länge der Höhe kann man ebenfalls ablesen. Nun kann man über die Formel A=½*g*h (beim Dreieck) oder A=g*h (beim Rechteck) den Flächeninhalt berechnen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Achsparallele Flächen berechnen - A.03.01

Falls eine Dreieckfläche oder eine Rechteckfläche mindestens eine Seite hat, die parallel zu einer der Koordinatenachsen ist, wählt man diese Seite als Grundlinie. Die Länge der Grundlinie kann man anhand der Koordinaten der Endpunkte ablesen. Die Höhe steht senkrecht auf der Grundlinie. Die Länge der Höhe kann man ebenfalls ablesen. Nun kann man über die Formel A=½*g*h (beim Dreieck) oder A=g*h (beim Rechteck) den Flächeninhalt berechnen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Achsparallele Flächen berechnen, Beispiel 1 - A.03.01

Falls eine Dreieckfläche oder eine Rechteckfläche mindestens eine Seite hat, die parallel zu einer der Koordinatenachsen ist, wählt man diese Seite als Grundlinie. Die Länge der Grundlinie kann man anhand der Koordinaten der Endpunkte ablesen. Die Höhe steht senkrecht auf der Grundlinie. Die Länge der Höhe kann man ebenfalls ablesen. Nun kann man über die Formel A=½*g*h (beim Dreieck) oder A=g*h (beim Rechteck) den Flächeninhalt berechnen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Achsparallele Flächen berechnen, Beispiel 3 - A.03.01

Falls eine Dreieckfläche oder eine Rechteckfläche mindestens eine Seite hat, die parallel zu einer der Koordinatenachsen ist, wählt man diese Seite als Grundlinie. Die Länge der Grundlinie kann man anhand der Koordinaten der Endpunkte ablesen. Die Höhe steht senkrecht auf der Grundlinie. Die Länge der Höhe kann man ebenfalls ablesen. Nun kann man über die Formel A=½*g*h (beim Dreieck) oder A=g*h (beim Rechteck) den Flächeninhalt berechnen.


Dieses Material ist Teil einer Sammlung

Text

BR alpha

GRIPS Mathe: Lehrer-Informationen für den Unterricht - Parallelogramm und zusammengesetzte Formen

Ein Rechteck ist einfach konstruiert und berechnet, aber wie berechnet man ein Parallelogramm? Mathelehrer Basti Wohlrab geht mit seinen Schülern in eine Gärtnerei, wo sie beim Anlegen eines Beets unterschiedliche geometrische Figuren vergleichen und mit einer großen Folie formen. Sie lernen, wie man ein Parallelogramm konstruiert (über Rechteecke und Dreiecke) und die Fläche berechnet. Wie viele Silberrauten werden für das Beet gebraucht, wenn der Gärtner 3 Stück je Quadratmeter empfiehlt? Wie viele Buchsbäume für die Umrandung? Zum Schluss berechnet das Team noch die Menge benötigten Düngers. Im Online-Angebot gibt es weitere Filmteile zur Flächenberechnung zusammengesetzter Figuren.

Anderer Ressourcentyp

BR alpha

GRIPS Mathe: Parallelogramm und zusammengesetzte Formen - GRIPS Mathe Lektion 17

Warum sind Gartenbeete eigentlich immer rechteckig? Das fragen sich auch Sebastian Wohlrab, Marius und Josephine. In einer Gärtnerei legen sie ein Beet an, das die Form eines Parallelogramms hat. Bevor sie loslegen, schauen sie sich erst einmal an, was das Besondere an einem Parallelogramm ist. Anschließend lernen sie Schritt für Schritt, wie man ein Parallelogramm konstruiert. Als sie das Beet angelegt haben, möchten sie es natürlich noch gerne bepflanzen. Dazu müssen sie den Flächeninhalt des Gartenbeets berechnen. Das ist bei einem Parallelogramm gar nicht schwer. Im dritten Teil geht es um ein ganz besonderes Beet: Es soll die Form eines Männchens haben. Sebastian Wohlrab und seine Schüler überlegen, wie sie die Fläche eines solchen Beetes berechnen können. Die Lektion besteht aus 1 Film, 3 Mediaboxen und 3 Texte.