Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Fläche eines Dreiecks mit umschriebenen Rechtecken berechnen | A.03.03

Eine recht intuitive Möglichkeit eine Dreiecksfläche im Koordinatensystem zu berechnen, kann man anwenden, wenn die Koordinaten der Eckpunkte ganzzahlig sind, dann kann man dem Dreieck nämlich ein Rechteck umschreiben. 1.Man spannt ein Rechteck um das Dreieck, so dass alle Seiten des Rechtecks parallel zur x-Achse und zur y-Achse sind und alle drei Eckpunkte des Dreiecks irgendwo auf dem Rechteck liegen. Nun entstehen außerhalb des gesuchten Dreiecks drei rechtwinklige Dreiecke. 2.Die Flächen dieser rechtwinkligen Dreiecke sind recht einfach zu berechnen. Man zieht diese Flächen von der Rechteckfläche ab und hat den gesuchten Flächeninhalt. Hört sich schlimmer an als es ist.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Fläche eines Dreiecks mit umschriebenen Rechtecken berechnen, Beispiel 1 | A.03.03

Eine recht intuitive Möglichkeit eine Dreiecksfläche im Koordinatensystem zu berechnen, kann man anwenden, wenn die Koordinaten der Eckpunkte ganzzahlig sind, dann kann man dem Dreieck nämlich ein Rechteck umschreiben. 1.Man spannt ein Rechteck um das Dreieck, so dass alle Seiten des Rechtecks parallel zur x-Achse und zur y-Achse sind und alle drei Eckpunkte des Dreiecks irgendwo auf dem Rechteck liegen. Nun entstehen außerhalb des gesuchten Dreiecks drei rechtwinklige Dreiecke. 2.Die Flächen dieser rechtwinkligen Dreiecke sind recht einfach zu berechnen. Man zieht diese Flächen von der Rechteckfläche ab und hat den gesuchten Flächeninhalt. Hört sich schlimmer an als es ist.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Extremwertaufgabe Dreieck / Viereck: maximale Fläche berechnen | A.21.03

Eine der häufig auftauchenden Extremwertaufgaben: Man muss die maximale Fläche eines Dreiecks oder die maximale Fläche eines Rechtecks bestimmen, wobei ein Eckpunkt (oder zwei) auf einer vorgegebenen Funktion liegt. Man verwendet die Formel A=½·g·h bzw. A=a·b. Eine der Seiten ist meist eine waagerechte Strecke (die man als Differenz der x-Werte berechnet), die andere Seite ist meist senkrecht (wird also als Differenz der y-Werte berechnet). Dieses in die Formel einsetzen und schon ist die Aufgabe halb gelöst.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Extremwertaufgabe Dreieck / Viereck: maximale Fläche berechnen, Beispiel 5 | A.21.03

Eine der häufig auftauchenden Extremwertaufgaben: Man muss die maximale Fläche eines Dreiecks oder die maximale Fläche eines Rechtecks bestimmen, wobei ein Eckpunkt (oder zwei) auf einer vorgegebenen Funktion liegt. Man verwendet die Formel A=½·g·h bzw. A=a·b. Eine der Seiten ist meist eine waagerechte Strecke (die man als Differenz der x-Werte berechnet), die andere Seite ist meist senkrecht (wird also als Differenz der y-Werte berechnet). Dieses in die Formel einsetzen und schon ist die Aufgabe halb gelöst.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Extremwertaufgabe Dreieck / Viereck: maximale Fläche berechnen, Beispiel 3 | A.21.03

Eine der häufig auftauchenden Extremwertaufgaben: Man muss die maximale Fläche eines Dreiecks oder die maximale Fläche eines Rechtecks bestimmen, wobei ein Eckpunkt (oder zwei) auf einer vorgegebenen Funktion liegt. Man verwendet die Formel A=½·g·h bzw. A=a·b. Eine der Seiten ist meist eine waagerechte Strecke (die man als Differenz der x-Werte berechnet), die andere Seite ist meist senkrecht (wird also als Differenz der y-Werte berechnet). Dieses in die Formel einsetzen und schon ist die Aufgabe halb gelöst.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Maximaler Umfang und minimaler Umfang berechnen, Beispiel 1 | A.21.04

Der maximale Umfang (oder minimale Umfang) von Figuren ist nicht sehr häufig gefragt. Falls doch, berechnet man den Umfang (zählt die Längen aller Außenseiten zusammen) und berechnet davon das Minimum/Maximum.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Dreiecksfläche berechnen, Beispiel 3 | A.18.08

Sind Flächen von Geraden umschlossen, kann man diese Flächen oft als Dreiecksflächen angehen. Diese Dreiecksflächen kann man über A=1/2*g*h bestimmen (KANN man, MUSS man nicht!). Das Integral einer Geraden mit den Koordinatenachsen ist z.B. oft gefragt, das ist ein rechtwinkliges Dreieck.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Extremwertaufgaben, schwierige Übungen, Beispiel 2 | A.21.09

Leider gehören viele der Extremwertaufgaben nicht zu den letztgenannten Standardfällen. Viele der Extremwertaufgaben sind immer wieder neue, hässliche Typen. Hier ein Versuch ein paar davon vorzurechnen. In den Beispielen geht es um die Fläche von einem beliebigen Dreieck, Fläche vom Trapez und zwei senkrechten Geraden die aus einer Fläche einen Streifen ausschneiden.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Extremwertaufgaben, schwierige Übungen, Beispiel 4 | A.21.09

Leider gehören viele der Extremwertaufgaben nicht zu den letztgenannten Standardfällen. Viele der Extremwertaufgaben sind immer wieder neue, hässliche Typen. Hier ein Versuch ein paar davon vorzurechnen. In den Beispielen geht es um die Fläche von einem beliebigen Dreieck, Fläche vom Trapez und zwei senkrechten Geraden die aus einer Fläche einen Streifen ausschneiden.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Maximaler Umfang und minimaler Umfang berechnen | A.21.04

Der maximale Umfang (oder minimale Umfang) von Figuren ist nicht sehr häufig gefragt. Falls doch, berechnet man den Umfang (zählt die Längen aller Außenseiten zusammen) und berechnet davon das Minimum/Maximum.


Dieses Material ist Teil einer Sammlung