Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mehrdimensionale Funktion: Extrempunkte berechnen | A.51.02

Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. Das Überprüfen in der zweiten Ableitung (“Hesse-Matrix”) geht nach einem vorgegebenen Schema (wird im Hauptfilm erläutert).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Extremwertaufgaben im Alltag: Zylinder in einer Kugel, Volumen einer Schachtel | A.21.02

Bei einigen Typen von Extremwertaufgaben sind keine Funktionen im Spiel. (Z.B. steckt ein Zylinder in einer Kugel, der dann maximales Volumen haben soll. Oder das Volumen einer Schachtel soll maximal werden, die aus einem Karton gebastelt wird oder …). Es geht also um Anwendungen aus dem “Alltag”. Ich nenne diese reale Anwendungen, aber eigentlich haben sie keinen richtigen, offiziellen Namen. Übrigens vereinfacht bei diesen Aufgaben sehr häufig der Strahlensatz die Rechnung sehr stark. (Also: Strahlensatz am Start?!?)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: So löst man Extremwertaufgaben | A.21.01

Meist kann man folgendermaßen vorgehen: man schaut, was überhaupt maximal werden muss (z.B. könnte das eine Dreiecksfläche sein). Die Formel für diese Größe sucht man aus der Formelsammlung raus (z.B. bei der Dreiecksfläche: A=½·g·h). Nun ist das große Ziel, in dieser Formel nur noch EINE Unbekannte drin zu haben. Wie erreicht man das? Man hat immer noch eine weitere Information gegeben (z.B. der Umfang des Dreieck ist gegeben oder ein Eckpunkt liegt auf der Funktion oder...). Diese Information (welche “Nebenbedingung” heißt), verwendet man irgendwie (je nach Aufgabenstellung) und hat dann irgendwann mal die Ausgangsformel (in unserem Beispiel: die Dreiecksfläche) in Abhängigkeit von nur noch einer einzigen Variablen da stehen (Nun heißt diese Formel “Zielfunktion”). Ab jetzt ist es einfach: Ableiten und Null setzen (oder falls man einen GTR/CAS verwenden darf: einfach Maximum bestimmen).


Dieses Material ist Teil einer Sammlung

Simulation, Website

Logo creative commons

Ulrich Steinmetz, Medienberater Kreis Lippe

GeoGebra: Wie weit ist der Horizont entfernt?

Wie weit kann man eigentlich auf das Meer hinausschauen? Da die Erde gekrümmt ist, kann man nur bis zu einer Grenzlinie, dem Horizont sehen. Wie berechnet man die Entfernung aber?

Simulation

Logo creative commons

Ulrich Steinmetz, Medienberater Kreis Lippe

GeoGebra: Ein Goldenes Dreieck

Ein goldenes Dreieck hat besondere Eigenschaften, die in dieser Übung erfahren werden können.

Video

Havonix Schulmedien-Verlag

Extremwertaufgaben | A.21

Unter Extremwertaufgaben (Optimierungsaufgaben) werden alle Aufgaben gefasst, in denen etwas am größten oder am kleinsten werden soll (eine Dreiecksfläche, ein Volumen, ein Abstand). Es gibt zur Zeit mehrere Standardaufgaben von so einer Maximierung (oder Minimierung). Diese werden hier vorgerechnet.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Kurvendiskussion Beispiel 2f: Wendenormale bestimmen | A.19.02

In dieser Funktionsuntersuchung passiert erst mal nichts Außergewöhnliches, außer dem Auftauchen dreifachen Nullstelle (= Sattelpunkt). Als “Bonbon” bestimmen wir die Wendetangente und ergötzen uns an einer einfachen Flächenberechnung.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Kurvendiskussion Beispiel 3c: Nullstellen berechnen | A.19.03

Wir führen eine Funktionsanalyse einer Funktion durch, die nicht symmetrisch ist. Besonderheit ist ein Berührpunkt mit der x-Achse (also eine doppelte Nullstelle). Desweiteren bestimmen wir die Wendenormale und die Funktion, die durch Spiegelung an der x-Achse entsteht. Zum Schluss bestimmen wir noch die Flächen zwischen: gespiegelte Funktion und f(x).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Kurvendiskussion Beispiel 4f: Funktion zeichnen | A.19.04

Ach, wie schön ist eine Funktionsanalyse mit einer Kurvenschar. Hier erfüllen wir uns diesen Wunsch. Wir führen eine Kurvendiskussion mit einer (relativ) einfachen Funktionsschar, also einer Funktion, die einen Parameter enthält.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Kurvendiskussion Beispiel 5f: Funktion zeichnen | A.19.05

Eine etwas hässlichere Funktionsuntersuchung einer Funktion mit Parameter. Nullstellen, Extrempunkte, Wendepunkte werden mit Parametern hässlicher. Wir kämpfen uns durch.


Dieses Material ist Teil einer Sammlung