Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mehrdimensionale Funktion: Extrempunkte berechnen, Beispiel 3 | A.51.02

Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. Das Überprüfen in der zweiten Ableitung (“Hesse-Matrix”) geht nach einem vorgegebenen Schema (wird im Hauptfilm erläutert).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mehrdimensionale Funktion: Extrempunkte berechnen, Beispiel 2 | A.51.02

Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. Das Überprüfen in der zweiten Ableitung (“Hesse-Matrix”) geht nach einem vorgegebenen Schema (wird im Hauptfilm erläutert).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mehrdimensionale Funktion: Extrempunkte berechnen, Beispiel 4 | A.51.02

Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. Das Überprüfen in der zweiten Ableitung (“Hesse-Matrix”) geht nach einem vorgegebenen Schema (wird im Hauptfilm erläutert).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Fläche eines Dreiecks mit umschriebenen Rechtecken berechnen, Beispiel 1 | A.03.03

Eine recht intuitive Möglichkeit eine Dreiecksfläche im Koordinatensystem zu berechnen, kann man anwenden, wenn die Koordinaten der Eckpunkte ganzzahlig sind, dann kann man dem Dreieck nämlich ein Rechteck umschreiben. 1.Man spannt ein Rechteck um das Dreieck, so dass alle Seiten des Rechtecks parallel zur x-Achse und zur y-Achse sind und alle drei Eckpunkte des Dreiecks irgendwo auf dem Rechteck liegen. Nun entstehen außerhalb des gesuchten Dreiecks drei rechtwinklige Dreiecke. 2.Die Flächen dieser rechtwinkligen Dreiecke sind recht einfach zu berechnen. Man zieht diese Flächen von der Rechteckfläche ab und hat den gesuchten Flächeninhalt. Hört sich schlimmer an als es ist.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Fläche und Flächeninhalt eines Vierecks berechnen | A.03.05

Um die Fläche eines Vierecks zu berechnen, zerlegt man das Viereck in zwei Dreiecke und berechnet dann den Flächeninhalt der beiden Dreiecke. (Falls es sich beim Viereck um eine Quadrat- oder Rechtecksfläche handelt, geht’s natürlich auch einfacher über Länge mal Breite.) Die meines Erachtens jedoch bessere Variante ist dem Viereck ein achsenparalleles Rechteck zu umschreiben und dann ein paar rechtwinklige Dreiecke (evtl. auch ein Rechteck) abzuziehen. Details: siehe Beispielfilme.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Fläche und Flächeninhalt eines Dreiecks mit Flächeninhaltsformel berechnen, Beispiel 2 - A.03.04

Es gibt tatsächlich auch eine stupide Formel für Dreiecksflächen. Stupid im Sinne von: man muss bei dieser Flächeninhaltsformel nichts denken. Man setzt einfach nur die Koordinaten der Eckpunkte des Dreiecks ein und erhält die Dreiecksfläche. Die Formel für die Fläche lautet: A=½*[x1*(y2-y3)+x2*(y3-y1)+x3*(x1-y2)]. Hierbei sind (x1 - y1), (x2 - y2) und (x3 - y3) die Koordinaten der Eckpunkte des Dreiecks (die Reihenfolge spielt keine Rolle).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Fläche und Flächeninhalt eines Dreiecks mit Flächeninhaltsformel berechnen, Beispiel 3 | A.03.04

Es gibt tatsächlich auch eine stupide Formel für Dreiecksflächen. Stupid im Sinne von: man muss bei dieser Flächeninhaltsformel nichts denken. Man setzt einfach nur die Koordinaten der Eckpunkte des Dreiecks ein und erhält die Dreiecksfläche. Die Formel für die Fläche lautet: A=½*[x1*(y2-y3)+x2*(y3-y1)+x3*(x1-y2)]. Hierbei sind (x1|y1), (x2|y2) und (x3|y3) die Koordinaten der Eckpunkte des Dreiecks (die Reihenfolge spielt keine Rolle).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Fläche und Flächeninhalt eines Dreiecks mit Flächeninhaltsformel berechnen - A.03.04

Es gibt tatsächlich auch eine stupide Formel für Dreiecksflächen. Stupid im Sinne von: man muss bei dieser Flächeninhaltsformel nichts denken. Man setzt einfach nur die Koordinaten der Eckpunkte des Dreiecks ein und erhält die Dreiecksfläche. Die Formel für die Fläche lautet: A=½*[x1*(y2-y3)+x2*(y3-y1)+x3*(x1-y2)]. Hierbei sind (x1 - y1), (x2 - y2) und (x3 - y3) die Koordinaten der Eckpunkte des Dreiecks (die Reihenfolge spielt keine Rolle).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Fläche und Flächeninhalt eines Dreiecks mit Flächeninhaltsformel berechnen, Beispiel 1 - A.03.04

Es gibt tatsächlich auch eine stupide Formel für Dreiecksflächen. Stupid im Sinne von: man muss bei dieser Flächeninhaltsformel nichts denken. Man setzt einfach nur die Koordinaten der Eckpunkte des Dreiecks ein und erhält die Dreiecksfläche. Die Formel für die Fläche lautet: A=½*[x1*(y2-y3)+x2*(y3-y1)+x3*(x1-y2)]. Hierbei sind (x1 - y1), (x2 - y2) und (x3 - y3) die Koordinaten der Eckpunkte des Dreiecks (die Reihenfolge spielt keine Rolle).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Aussagen zur Stammfunktion treffen anhand des Schaubildes der Ableitung, Beispiel 4 | A.27.04

Gegeben ist das Schaubild einer Ableitungsfunktion. Man muss nun bestimmte Aussagen über die Stammfunktion treffen. Manchmal sind auch ein paar Aussagen gegeben und man muss entscheiden, ob die wahr, falsch oder unentscheidbar sind. Man kann die Stammfunktion SKIZZIEREN (also die Ableitung grafisch aufleiten) oder man denkt ein bisschen um die Ecke.


Dieses Material ist Teil einer Sammlung