Suchergebnis für: ** Zeige Treffer 1 - 10 von 513

Simulation, Website

raum122 UG (haftungsbeschränkt)

Webseite Archiraum - Die Welt der Architektur

Eine Webseite, auf der Kinder die Welt der Architektur spielerisch entdecken können. Der Archiraum wurde speziell für 8- bis 14-Jährige konzipiert und schließt die Lücke an entsprechenden Bildungsangeboten für diese Altersgruppe im virtuellen Raum. Jeden Tag sind Kinder von Architektur umgeben - in der Schule, zu Hause oder in ihrer Freizeit. Doch meistens wissen sie wenig über den gebauten Raum, denn nicht alle haben Zugang zu entsprechenden Bildungsangeboten. Das ändert sich nun: Unterstützt durch das Förderprogramm "Ein Netz für Kinder" entstand dieses erste interaktive Kinder-Lernspiel, das fachübergreifende Themengebiete der Architektur fachlich fundiert, aber dennoch spielerisch vermittelt. Das Projekt wurde im Rahmen von "Ein Netz für Kinder" von der Beauftragten der Bundesregierung für Kultur und Medien und vom Bundesministerium für Familie, Senioren, Frauen und Jugend in den Jahren 2013 bis 2016 gefördert.

Text

Prof. Dr. Jürgen Roth

DynaGeo: Castel del Monte

Hier werden einige interaktive Konstruktionen angeboten, die mit Hilfe der dynamischen Geometriesoftware (DGS) EUKLID DynaGeo erstellt wurden. Die Materialien eignen sich für verschiedene Themengebiete und Klassenstufen.

Experiment

Siemens Stiftung

Basteleien mit Schubsymmetrie

Bastelanleitung:Aus einfachen Grundmustern und der Anwendung schubsymmetrischer Regeln entstehen Bandornamente.Vorgeschlagen wird die Herstellung von Kartoffelstempeln. Die Schülerinnen und Schüler können damit auf einfache Weise am Küchentisch eigene Ornamente herstellen. (Alternativ kann auch ein Stempel-Bastelset verwendet werden.) Eine weitere Variante ist die Arbeit mit transparentem Papier und einem durchgepausten Grundmuster.

Text

Siemens Stiftung

Basteleien mit Achsensymmetrie

Bastelanleitung: Ein- oder mehrfach gefaltetes Papier wird mit der Schere an den Rändern zugeschnitten. Aus bunten Farb- oder Tintentropfen entstehen durch Falten und Pressen reizvolle, achsensymmetrische Klecksbilder. Die durch das Falten entstehenden Falze im Papier sind sichtbare Symmetrieachsen, an denen sich die Muster, ob geschnitten oder gekleckst, spiegeln. Mehrfaches Falten erzeugt mehrfach gespiegelte Muster.

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mehrdimensionale Funktion: Extrempunkte berechnen, Beispiel 2 | A.51.02

Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. Das Überprüfen in der zweiten Ableitung (“Hesse-Matrix”) geht nach einem vorgegebenen Schema (wird im Hauptfilm erläutert).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mehrdimensionale Funktion: Extrempunkte berechnen, Beispiel 3 | A.51.02

Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. Das Überprüfen in der zweiten Ableitung (“Hesse-Matrix”) geht nach einem vorgegebenen Schema (wird im Hauptfilm erläutert).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Mittelsenkrechte berechnen, Beispiel 1 - A.02.14

Wie berechnet man die Gleichung einer Mittelsenkrechten? Eine Mittelsenkrechte steht senkrecht auf einer Dreiecksseite und geht durch die Mitte dieser Seite. Dadurch, dass die Mittelsenkrechte orthogonal auf der Dreiecksseite steht, kann man ihre Steigung berechnen (man berechnet zuerst die Steigung der Dreiecksseite, davon nimmt man den negativen Kehrwert). Den Mittelpunkt der Dreieckseite berechnet man in dem man die Koordinaten beiden Eckpunkte zusammenzählt und durch 2 teilt. Mit der Seiten der Mittelsenkrechten und der Seitenmitte als Punkt bestimmt man nun die Geradengleichung der Mittelsenkrechten (A.02.08 und A.02.09).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Flächen und Flächeninhalt berechnen | A.03

Fast alle Flächen werden auf Dreiecksflächen zurückgeführt. Wie berechnet man die Fläche eines Dreiecks? Es gibt (wie immer) mehrere Möglichkeiten. Wenn Sie Glück haben, ist eine der drei Seiten parallel zur x- oder zur y-Achse. Dann kommt man recht gut über Standardformel A=½*g*h weiter. Wenn zwar keine der Seiten parallel zu den Koordinatenachsen ist, aber die Koordinaten aller Eckpunkte ganzzahlig sind (keine blöden Kommazahlen), so kann man um das Dreieck ein achsenparalleles Rechteck ziehen und von dieser Rechtecksfläche dann drei rechteckige Dreiecke abziehen. Falls auch das nicht geht, kann man noch die lange Flächeninhaltsformel anwenden oder man bestimmt für die Formel A=½*g*h die Grundlinie und die Höhe über Lotgerade. (Die letzte genannte Variante ist etwas umständlich, wird aber am häufigsten verwendet.)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Berechnung Dreieck: Fläche und Flächeninhalt Dreieck berechnen, Beispiel 1 | A.03.02

Der Lösungsweg, den man am häufigsten sieht, verwendet die Formel A=½*g*h. Irgendeine der drei Seiten wählt man als Grundlinie. Die Länge der Grundlinie bestimmt man über den Abstand der beiden Endpunkte (Abstand Punkt-Punkt). Um die Höhe zu berechnen, berechnet man erst die Steigung der Grundlinie. Die Steigung der Höhe ist nun der negative Kehrwert der Grundliniensteigung. Zusammen mit den Koordinaten des gegenüberliegenden Eckpunktes kann man die Geradengleichung der Höhe bestimmen. Diese Lotgerade schneidet man mit der Gleichung der Grundlinie (die man natürlich ebenfalls bestimmen muss). Der Schnittpunkt ist der Lotfußpunkt. Der Abstand vom Lotfußpunkt zum gegenüberliegenden Eckpunkt ist die Länge der Höhe.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Fläche und Flächeninhalt eines Vierecks berechnen, Beispiel 1 - A.03.05

Um die Fläche eines Vierecks zu berechnen, zerlegt man das Viereck in zwei Dreiecke und berechnet dann den Flächeninhalt der beiden Dreiecke. (Falls es sich beim Viereck um eine Quadrat- oder Rechtecksfläche handelt, geht’s natürlich auch einfacher über Länge mal Breite.) Die meines Erachtens jedoch bessere Variante ist dem Viereck ein achsenparalleles Rechteck zu umschreiben und dann ein paar rechtwinklige Dreiecke (evtl. auch ein Rechteck) abzuziehen. Details: siehe Beispielfilme.


Dieses Material ist Teil einer Sammlung