Anderer Ressourcentyp, Text

MatheGuru

Funktionsschar, Kurvenschar

Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. Die Funktionsschar, auch Kurvenschar genannt, wird hier definiert und an Beispielen erläutert.

Anderer Ressourcentyp, Text

Logo creative commons

Projekt PRIMAS, Pädagogische Hochschule Freiburg

Geometrie mit Papierstreifen

Bei dieser Aufgabe geht es darum, verschiedene geometrische Formen zu erforschen. Die SchülerInnen legen zwei Papierstreifen übereinander und betrachten die Formen, die sich durch die Überschneidung ergeben. Experimentell erzeugen die SchülerInnen verschiedene geometrische Formen und untersuchen ihre Eigenschaften wie z. B. die mögliche Parallelität zweier Seiten, Eigenschaften der Diagonalen und Zusammenhänge zwischen Seitenlängen oder Winkelgrößen.


Dieses Material ist Teil einer Sammlung

Anderer Ressourcentyp, Text

MatheGuru

Scheitelpunktform

Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. Hier finden Sie verschiedene Methoden zur Scheitelpunktform.

Anderer Ressourcentyp

BR alpha

GRIPS Mathe: Größen: Länge, Fläche, Volumen, Masse, Zeit - GRIPS Mathe Lektion 15

Charlotte, Maurice und Sebastian Wohlrab möchten eine Mountainbike-Tour auf Sardinien machen. Dazu müssen sie jede Menge Dinge ins Auto packen. Ob wohl alles reinpasst? In dieser Lektion dreht sich alles um Größen, genauer um Längen und Flächen. Kennen gelernt werden die dazugehörigen Maßeinheiten und und es wird gezeigt, wie man Einheiten umrechnen kann.Die Lektion besteht aus 2 Filmen, 4 Mediaboxen und 6 Texten.

Anderer Ressourcentyp

BR alpha

GRIPS Mathe: Flächeninhalt Dreieck und Vielecke - GRIPS Mathe Lektion 18

Wie viele Fliesen brauche ich für mein neues Bad? Diese typische Heimwerker-Frage beschäftigt auch Mathelehrer Basti und seine Schüler und der passende Ort dafür ist eine Ausbildungswerkstatt für Fliesenleger. Das GRIPS-Team untersucht die Merkmale von Dreiecken und Vielecken und diskutiert die wichtigsten Unterschiede bei Dreiecken. Mathelehrer Basti erklärt wie man mithilfe des Zirkels ein gleichschenkliges Dreieck und dann ein Fünfeck konstruiert. Für den Fliesenleger-Meister berechnen die Schüler den Flächeninhalt eines Fünfecks und überlegen, wie viele Fliesen sie inklusive Verschnitt brauchen. Die Lektion besteht aus 1 Film, 2 Mediaboxen und 3 Texten.

Anderer Ressourcentyp

BR alpha

GRIPS Mathe: Volumen Pyramide und Kegel - GRIPS Mathe Lektion 24

Mathelehrer Sebastian Wohlrab, Matthias und Stina wollen für ihre Party eine Bar bauen mit Pyramiden und Eckpfeilern und gehen dazu in eine Schreinerei. Dort lernen sie wie man das Volumen von Pyramiden und Kegeln berechnet. Im Umschüttversuch entdecken sie den konstanten 1/3-Zusammenhang von Spitzkörpern zu Quader und Zylinder und stellen die Volumen-Formeln zu Pyramide und Kegel auf. Mit Sand, Sägespänen und Wasser messen sie unterschiedliche Dichten und berechnen damit, wie schwer die Pyramide sandgefüllt wäre. Die Eckpfosten für die Bar sind kompliziertere Körper mit einer Spitze. In der Dreherei entstehen die spitzen Pfosten in Aluminium und daran zeigt Basti, wie diese in mehrere einfacher zu berechnende Körper unterteilt werden können. Ob die Schüler sich die Eckpfosten auch in Gold leisten können, zeigt sich bei der Berechnung der Masse. Die Lektion besteht aus 1 Film, 2 Mediaboxen, 7 Texten und 1 Übung.

Anderer Ressourcentyp

BR alpha

GRIPS Mathe: Umgekehrt proportionale Zuordnungen - GRIPS Mathe Lektion 32

Basti Wohlrab und seine Schüler haben ein ganz besonders dringendes Problem: Vor der Grillparty zum Fußball-Länderspiel muss noch ein Stapel Flyer verteilt werden. Ob das noch bis Spielbeginn zu schaffen ist? Mathelehrer Basti zeigt, wie man mithilfe von umgekehrt-proportionalen Zuordnungen die Arbeitsleistung unterschiedlicher Teams berechnen kann. Die Schüler lösen die Aufgabe auf zwei Arten - einmal mithilfe einer Wertetabelle und einmal grafisch. Die Lektion besteht aus 1 Film, 2 Mediaboxen und 5 Texten.

Anderer Ressourcentyp

BR alpha

GRIPS Mathe: Grundlagen Umfang und Flächeninhalt - GRIPS Mathe Lektion 16

Auf einem Reiterhof gibt es nicht nur Pferde zu bestaunen. Es ist auch der geeignete Ort, um sich mit Umfang und Flächeninhalt zu beschäftigen. Denn wie lang und breit ist eigentlich die Reithalle? Und wie groß der Springreitplatz? Sebastian Wohlrab, Matthias und Eve sind der Lösung auf der Spur. In dieser Lektion wird gelernt, wie man den Umfang einer geometrischen Figur bestimmen kann. Außerdem geht es um den Flächeninhalt von Rechtecken und Quadraten.Die Lektion besteht aus 1 Film, 2 Mediaboxen und 5 Texte.

Anderer Ressourcentyp

BR alpha

GRIPS Mathe: Parallelogramm und zusammengesetzte Formen - GRIPS Mathe Lektion 17

Warum sind Gartenbeete eigentlich immer rechteckig? Das fragen sich auch Sebastian Wohlrab, Marius und Josephine. In einer Gärtnerei legen sie ein Beet an, das die Form eines Parallelogramms hat. Bevor sie loslegen, schauen sie sich erst einmal an, was das Besondere an einem Parallelogramm ist. Anschließend lernen sie Schritt für Schritt, wie man ein Parallelogramm konstruiert. Als sie das Beet angelegt haben, möchten sie es natürlich noch gerne bepflanzen. Dazu müssen sie den Flächeninhalt des Gartenbeets berechnen. Das ist bei einem Parallelogramm gar nicht schwer. Im dritten Teil geht es um ein ganz besonderes Beet: Es soll die Form eines Männchens haben. Sebastian Wohlrab und seine Schüler überlegen, wie sie die Fläche eines solchen Beetes berechnen können. Die Lektion besteht aus 1 Film, 3 Mediaboxen und 3 Texte.

Anderer Ressourcentyp

BR alpha

GRIPS Mathe: Schätzen und Messen - GRIPS Mathe Lektion 21

Im Fußballstadion trainiert Mathelehrer Basti Wohlrab mit den Schülern Milton, Erkan und Sadrullah das Schätzen. Wie viele Zuschauer passen in das Stadion? Die Schülern lernen das Aufteilen in überschaubare Einheiten, hier einzelne Sitzblöcke, und sie zählen zudem ab, wie viele Sitze ein Block hat. Dann zeigt Basti Wohlrab, wie man kleine Strecken beispielsweise mit Handspannen abschätzen kann. Für größere Strecken schlagen die Schüler die Körperlänge vor - und müssen die Spielfeldbreite gleich durch Hinlegen abmessen. Bei der Länge versuchen sie es dann lieber mit Schritten. Schwieriger ist die Abschätzung der Fläche der weit entfernten Anzeigetafel. Eine hilfreiche Bezugsgröße ist hier die Höhe das Geländers der Wartungstreppe. Das Abschätzen eines Volumen zeigt Basti Wohlrab indem er 1l-Milchpackungen in einem Aquarium stappelt. Auch beim Abschätzen von zusammengesetzten Größen helfen Bezugsgrößen: Zur Abschätzung einer Laufzeit stoppen die Schüler die Zeit für eine kurze Referenzstrecke und rechnen dann das Endergebnis hoch.Die Lektion besteht aus 1 Film, 1 Mediabox, 5 Texte und 1 Übung.