Text

Logo creative commons

TACCLE - PDF Version des E-Learning-Handbuchs

Dieses Buch wurde für LehrerInnen geschrieben, die mehr zum Thema E-Learning Wissen möchten und mit der Gestaltung von E-Learning-Materialien für den Unterricht experimentieren wollen. Das Buch ist ein Nachschlagewerk und gleichzeitig ein praktisches Handbuch. Dieses Buch ist für Sie geeignet, wenn: • Sie an E-Learning interessiert sind (oder denken, dass Sie sich dafür interessieren sollten!), • Sie zunehmend das Gefühl haben, dass ein Großteil der Dinge, die Sie zum Thema E-Learning lesen und hören, über den Wissensstand von “gewöhnlichen” LehrerInnen hinausgeht, • Sie sich zwar mit dem Computer auskennen, aber keine/kein Computer-ExpertIn sind (Das heißt, Sie können zwar gut mit Textverarbeitungssoftware, E-Mail-Anwendungen und Tabellenkalkulation arbeiten, aber das wäre auch schon alles), • Sie über Umsetzungsmöglichkeiten verfügen möchten, die über die Erstellung von “PowerPoint”-Präsentationen hinausgehen.

Simulation, Text

Prof. Dr. Jürgen Roth

DynaGeo: Grundvorstellungen zur Bruchrechnung

Hier werden einige interaktive Konstruktionen angeboten, die mit Hilfe der dynamischen Geometriesoftware (DGS) EUKLID DynaGeo erstellt wurden. Die Materialien eignen sich für verschiedene Themengebiete und Klassenstufen.

Simulation

Logo creative commons

Ulrich Steinmetz, Medienberater Kreis Lippe

GeoGebra: Ein Goldenes Dreieck

Ein goldenes Dreieck hat besondere Eigenschaften, die in dieser Übung erfahren werden können.

Simulation

Logo creative commons

Ulrich Steinmetz, Medienberater Kreis Lippe

GeoGebra: Optimale Flächenaufteilung

2 Nachbarn möchten ihre Grundstücksflächen optimieren, ohne dass jemand dabei benachteiligt wird. Aber wie?

Simulation

Logo creative commons

Ulrich Steinmetz, Medienberater Kreis Lippe

GeoGebra: Winkelsumme im Dreieck

Ein plausibler Beweis der Innenwinkelsumme durch Überlegungen an Außenwinkeln.

Simulation, Website

Logo creative commons

Ulrich Steinmetz, Medienberater Kreis Lippe

GeoGebra: Wie weit ist der Horizont entfernt?

Wie weit kann man eigentlich auf das Meer hinausschauen? Da die Erde gekrümmt ist, kann man nur bis zu einer Grenzlinie, dem Horizont sehen. Wie berechnet man die Entfernung aber?

Text

Prof. Dr. Jürgen Roth

Die Zahl i - phantastisch, praktisch, anschaulich

Wie kann ein geometrisch ausgerichteter Zugang zu den komplexen Zahlen aussehen? Historisch gesehen haben sich die komplexen Zahlen erst wirklich durchgesetzt, als mit der Gaußschen Zahlenebene eine geometrische Interpretation vorlag. Für eine anschauliche Einführung in die komplexen Zahlen für Schülerinnen und Schüler einer 10. Klasse bietet sich ein geometrisch ausgerichteter Zugang an. Ausgangspunkt ist die Fragestellung ob es einen über die reellen Zahlen hinausgehenden Zahlbereich gibt, in dem z. B. die Gleichung x2 = − 1 gelöst werden kann, der den Zahlbereich der reellen Zahlen enthält und in dem die bekannten Rechenregeln weiterhin gültig sind (Permanenzprinzip). Mathematisch gesehen geht es um die Frage, ob die Körperaxiome erfüllt sind und der Körper der reellen Zahlen ein Teilkörper dieses neuen Körpers ist. Die hier verfolgte Idee besteht darin, den anschaulichen, zum Körper der reellen Zahlen isomorphen Körper der reellen Zeiger zu betrachten und ihn auf der anschaulichen Ebene geeignet zu erweitern.

Simulation, Text

Rothländer, Herwig

Past Perfect Tense im Englischen - Vorvergangenheit - Past Perfect Tense Simple in English

Online Übungsseite zur Vorvergangenheit - vorher eine Seite zum Studieren und Einprägen, dann 6 Onlineübungen; past perfect tense simple