Video

Havonix Schulmedien-Verlag

Was bedeuten eigentlich die Funktionen in der Analysis? | A.11

In der Analysis haben die verschiedenen Funktionen verschiedene Bedeutungen. Je nachdem wo man “x” einsetzt erhält man verschiedene anschauliche Bedeutungen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse / Kurvendiskussion

Die Analysis beschäftigt sich mit Funktionen. Die aus mathematischer Sicht interessantesten Punkte sind unter dem Oberbegriff “Funktionsanalyse” bzw. “Kurvendiskussion” zusammengefasst. Darin enthalten sind Schnittpunkte mit den Achsen, Hoch-, Tief- und Wendepunkte, evtl. noch Asymptoten. Als sehr wichtiges Hilfsmittel benötigt man die Ableitungen (=Differenzial) und das Aufleiten, welches korrekt Integrieren heißt oder Stammfunktion bilden. Dementsprechend redet man auch Differentialrechnung bzw. Integralrechnung. In diesem Hauptkapitel “1 Analysis” beschäftigen wir uns mit all diesen wichtigen und ganz wichtigen Grundlagen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Kubische Funktion, Funktionsanalyse / Kurvendiskussion, Beispiel 1a: wir zeichnen die Funktion

Wir sehen hier ein Beispiel einer Funktionsuntersuchung (=Kurvendiskussion) einer Funktion dritten Grades. Wir berechnen die Nullstellen, Hoch-, Tief- und Wendepunkte, machen eine Skizze der Funktion und freuen uns des Lebens.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Kubische Funktion, Funktionsanalyse / Kurvendiskussion, Beispiel 1f: Schnittpunkt berechnen

Wir sehen hier ein Beispiel einer Funktionsuntersuchung (=Kurvendiskussion) einer Funktion dritten Grades. Wir berechnen die Nullstellen, Hoch-, Tief- und Wendepunkte, machen eine Skizze der Funktion und freuen uns des Lebens.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Kubische Funktion, Funktionsanalyse / Kurvendiskussion, Beispiel 1b: Nullstellen berechnen

Wir sehen hier ein Beispiel einer Funktionsuntersuchung (=Kurvendiskussion) einer Funktion dritten Grades. Wir berechnen die Nullstellen, Hoch-, Tief- und Wendepunkte, machen eine Skizze der Funktion und freuen uns des Lebens.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Kubische Funktion, Funktionsanalyse / Kurvendiskussion, Beispiel 2 | A.05.07

Wir betrachten eine kubische Funktion und machen davon eine Funktionsuntersuchung (=Kurvendiskussion). Wir berechnen die Nullstellen, Hoch-, Tief- und Wendepunkte, machen eine Skizze der Funktion und lassen dadurch die kosmische Energie des Universums eine Entspannung unseres Seelenzustands bewirken.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Extremwertaufgaben, schwierige Übungen, Beispiel 3 | A.21.09

Leider gehören viele der Extremwertaufgaben nicht zu den letztgenannten Standardfällen. Viele der Extremwertaufgaben sind immer wieder neue, hässliche Typen. Hier ein Versuch ein paar davon vorzurechnen. In den Beispielen geht es um die Fläche von einem beliebigen Dreieck, Fläche vom Trapez und zwei senkrechten Geraden die aus einer Fläche einen Streifen ausschneiden.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Flächenberechnung und Flächeninhalt berechnen über Integrale | A.18

Will man den Flächeninhalt berechnen, z.B. bei der Flächenberechnung von Schaubildern, dann kommen Integrale ins Spiel. Die Integralberechnung zählt zu den wichtigen Themen der Mathematik. Das Integral ist ein Oberbegriff für das unbestimmte und das bestimmte Integral. Die Berechnung von Integralen heißt Integration.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Fläche berechnen zwischen Funktion und x-Sachse, Beispiel 3 | A.18.02

Berechnet man den Flächeninhalt zwischen einer Funktion und der x-Achse, integriert man diese Funktion und setzt die Integralgrenzen in die Stammfunktion ein. Die Integralgrenzen sind entweder die Nullstellen oder sie sind in der Aufgabenstellung gegeben.


Dieses Material ist Teil einer Sammlung