Text

Wolfram research

Wolfram Research Fachbereich Mathematik - Formelsammlung Mathematik

In diesen Seiten findet man sehr viele Formeln, die man im Mathematikunterricht der verschiedensten Schulstufen braucht. Die Seiten sind in Englisch gehalten, aber derart einfach, dass man eigentlich auch ohne große Kenntnisse der englischen Sprache sich leicht zurecht findet. Die Formeln sind kommentiert und mit Beispielen belegt, mathematische Größen sind genau beschrieben. Durch Links wird man zu Begriffen geführt, die eventuell unbekannt sind.

Text

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Schiefe Asymptote von gebrochen-rationalen Funktionen mit Polynomdivision bestimmen, Beispiel 3

Ist die größte Potenz oben genau eins größer als die größte Potenz unten, hat die Funktion eine schiefe Asymptote, also eine Näherungsgerade. Man erhält diese Gerade nur durch eine Polynomdivision.


Dieses Material ist Teil einer Sammlung

Text

Prof. Dr. Jürgen Roth

Die Zahl i - phantastisch, praktisch, anschaulich

Wie kann ein geometrisch ausgerichteter Zugang zu den komplexen Zahlen aussehen? Historisch gesehen haben sich die komplexen Zahlen erst wirklich durchgesetzt, als mit der Gaußschen Zahlenebene eine geometrische Interpretation vorlag. Für eine anschauliche Einführung in die komplexen Zahlen für Schülerinnen und Schüler einer 10. Klasse bietet sich ein geometrisch ausgerichteter Zugang an. Ausgangspunkt ist die Fragestellung ob es einen über die reellen Zahlen hinausgehenden Zahlbereich gibt, in dem z. B. die Gleichung x2 = − 1 gelöst werden kann, der den Zahlbereich der reellen Zahlen enthält und in dem die bekannten Rechenregeln weiterhin gültig sind (Permanenzprinzip). Mathematisch gesehen geht es um die Frage, ob die Körperaxiome erfüllt sind und der Körper der reellen Zahlen ein Teilkörper dieses neuen Körpers ist. Die hier verfolgte Idee besteht darin, den anschaulichen, zum Körper der reellen Zahlen isomorphen Körper der reellen Zeiger zu betrachten und ihn auf der anschaulichen Ebene geeignet zu erweitern.

Arbeitsblatt, Text

Chancen erarbeiten Verbundprojekt im Bundesverband Alphabetisierung und Grundbildung e.V.

Themenheft Mathematik: Einfache Grundlagen

Um Jugendlichen die Notwendigkeit von grundlegenden mathematischen Kenntnissen näher zu bringen, enthält das Themenheft vielfältige berufs- und alltagsnahe Sachaufgaben, unter anderem aus Haushalt und Familie, zur Tagesstruktur, zum Praktikum und Ausbildungsbetrieb oder der Arbeitsstelle und aus der Freizeit. Anders als in den bisherigen leicht lesbaren Themenheften ist das Themenheft “Mathematik” so konzipiert, dass die Kapitel nach didaktischen Prinzipien der Mathematik aufeinanderfolgend bearbeitet werden sollten.

Arbeitsblatt, Text

Chancen erarbeiten Verbundprojekt im Bundesverband Alphabetisierung und Grundbildung e.V.

Themenheft Mathematik: Informationen für Lehrende

In der Handreichung für Lehrende finden Sie Informationen zu den Einsatzmöglichkeiten des Themenheftes "Mathematik - einfache Grundlagen" im Unterricht. Der didaktische und methodische Aufbau des Themenheftes wird erläutert. Weiterhin erfahren Sie, welche Materialien, Bücher und Internetangebote sich eignen, die Unterthemen zu vertiefen. Sie erhalten Informationen zu den Autorinnen, Herausgebern und Kooperationspartnern.

Text

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Schaubild einer gebrochen-rationalen Funktion erstellen, Beispiel 1 | A.43.08

Gebrochen-rationale Funktionen zeichnet man am besten über die Asymptoten. Man zeichnet also zuerst die Asymptoten, danach eventuell Nullstellen (falls man Hoch-, Tief- oder Wendepunkte kennt zeichnet man diese ebenfalls ein) und versucht die Funktion zu zeichnen. Falls notwendig, kann man noch eine Wertetabelle machen, also noch ein paar Punkte einzeichnen. Das sollte für das Zeichnen ausreichen.


Dieses Material ist Teil einer Sammlung

Text

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Wurzelfunktion: Asymptote und Grenzwert berechnen, Beispiel 1 | A.45.06

Wurzelfunktionen haben an und für sich keine Asymptoten. Wenn Wurzelfunktionen jedoch Brüche oder sonstige komplizierte Zusätze haben, geht das jedoch. Man geht also folgendermaßen vor: Man bestimmt zuerst die Definitionsmenge. Nun lässt man x einmal gegen die linke Grenze der Definitionsmenge laufen, danach gegen die rechte Grenze. Je nach dem, was da raus kommt, hat man das asymptotische Verhalten bestimmt. (Falls x gegen Unendlich läuft und die y-Werte gegen eine Zahl, hat man eine waagerechte Asymptote. Falls x gegen eine Zahl läuft und die y-Werte gegen Unendlich, hat man eine senkrechte Asymptote.)


Dieses Material ist Teil einer Sammlung

Text

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Schaubild einer Wurzelfunktion erstellen, Beispiel 2 | A.45.07

Wurzel-Funktionen zeichnet man über das asymptotische Verhalten an den Grenzen des Definitionsbereichs. Falls man Nullstellen oder Hoch-, Tief- oder Wendepunkte kennt, zeichnet man diese ebenfalls ein und sollte nun die Funktion zeichnen können. Falls notwendig, kann man noch eine Wertetabelle machen, also noch ein paar Punkte einzeichnen.


Dieses Material ist Teil einer Sammlung

Text

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Aus dem Schaubild einer Wurzelfunktion die Funktionsgleichung erstellen | A.45.08

Beim Zeichnen von Wurzelfunktionen, ist der “Anfangspunkt” wichtig. Nennen wir den Punkt R mit den Koordinaten R(r|s). Zeigt das Schaubild der Wurzel nach rechts, so ist der Ansatz: f(x)=a·wurzelaus(x-r)+s. Zeigt das Schaubild der Wurzel nach links, so ist der Ansatz: f(x)=a·wurzelaus(-x+r)+s. Den Parameter “a” erhält man, indem man einen beliebigen Punkt einsetzt.


Dieses Material ist Teil einer Sammlung

Text

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Funktionsanalyse einer Wurzelfunktion: Übungen und Beispiele, Beispiel 1 | A.45.09

Ein paar Beispiele von Funktionsuntersuchungen von Wurzel-Funktionen. (Wir betrachten Nullstellen, Ableitungen, Extrem- und Wendepunkte, die Definitionsmenge, alle Asymptoten und fertigen eine Skizze.)


Dieses Material ist Teil einer Sammlung