Video

Havonix Schulmedien-Verlag

Annuitätenrechnung und Tilgungsrechnung: so berechnet man Annuitäten richtig | A.55.03

Nimmt man einen Kredit auf, den man natürlich tilgen will, setzt sich das aus einer Zinseszinsrechnung und einer Rentenrechnung zusammen. Die Formel für die Berechnung des Endkapitals lautet: K(n)=K(0)*q^n-R*(q^n-1)/(q-1). K(n) ist das Endkapital, K(0) der anfängliche Kredit, R die regelmäßige Rate (=Annuität) und für q gilt q=1+p/100. (Bemerkung: Die Formel ist auch als “Sparkassenformel” oder “Investitionsrechnung” bekannt).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Tangentialebene: Tangente einer mehrdimensionalen Funktion, Beispiel 2 | A.51.03

Eine Tangente ist bei einer Funktion mit mehreren Variablen keine Gerade, sondern eine Tangentialebene oder ein Tangentialraum (Letzteres brauchen Sie vermutlich nie). Es gibt recht viele Ansätze und Formeln dafür, die jedoch letztendlich alle auf das Gleiche führen. In jedem Fall braucht man die partiellen (ersten) Ableitungen der Funktion. Wir verwenden eine recht einfache Formel zur Berechnung.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Wissenswertes zu Funktionen | A.52

“Diverses” ist Sammelsurium von verschiedenen Themen. Allerdings mit Themen die etwas schwieriger sind und eher in den oberen Bereich der Oberstufe oder unteren Bereich der Hochschule gehören. Im ersten Unterkapitel vertiefen wir das Thema der senkrechten Asymptoten (Weiterführung von Kap. A.43.06), das zweite Unterkapitel beinhaltet eine “leichte” Regel für schwere Berechnungen von Grenzwerten. Das dritte Unterkapitel beinhaltet verschachtelte (=verkettete) Funktionen und im letzten Unterkapitel widmen wir uns den tollen Begriffen “injektiv, surjektiv und bijektiv.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mit L'Hospital Grenzwerte bestimmen, Beispiel 4 | A.52.02

L'Hospital wendet man an, wenn man für eine Grenzwertberechnung einen Bruch erhält in welchem sowohl Zähler als auch Nenner beide gegen Unendlich oder beide gegen Null gehen. Vorgehensweise: Man leitet Zähler und Nenner jeweils getrennt ab und betrachtet den neuen Bruch (ggf. nochmals die L'Hospitalsche Regel anwenden).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: p-q-Formel, Mitternachtsformel, Beispiel 9 | A.12.05

Die Mitternachtsformel (p-q-Formel oder pq Formel) wendet man bei quadratische Gleichungen an, wenn man also drei Terme hat: einen mit “x²”, einen mit “x” und eine Zahl ohne “x”. Auf einer Seite der Gleichung muss “=0” stehen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Substitution von Termen in Gleichungen, Beispiel 3 | A.12.06

Substituieren heißt ersetzen. Substitution wendet man an, wenn man zwei Terme sowie eine Zahl hat, wobei die Hochzahl des einen Terms doppelt so hoch wie die Hochzahl des anderen Terms ist. Nun substituiert (ersetzt) man einen Term durch “u”, den anderen durch “u²” und erhält eine Mitternachtsformel, aus welcher man u1 und u2 berechnet. Danach muss man resubstituieren, um wieder “x” zu erhalten. Das typische Beispiel für Substitution ist eine Gleichung, in welcher “x^4”, “x^2” und eine Zahl ohne “x” vorkommen. (Dieser Typ von Gleichung heißt: “biquadratisch”).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Substitution von Termen in Gleichungen, Beispiel 8 | A.12.06

Substituieren heißt ersetzen. Substitution wendet man an, wenn man zwei Terme sowie eine Zahl hat, wobei die Hochzahl des einen Terms doppelt so hoch wie die Hochzahl des anderen Terms ist. Nun substituiert (ersetzt) man einen Term durch “u”, den anderen durch “u²” und erhält eine Mitternachtsformel, aus welcher man u1 und u2 berechnet. Danach muss man resubstituieren, um wieder “x” zu erhalten. Das typische Beispiel für Substitution ist eine Gleichung, in welcher “x^4”, “x^2” und eine Zahl ohne “x” vorkommen. (Dieser Typ von Gleichung heißt: “biquadratisch”).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Substitution von Termen in Gleichungen, Beispiel 10 | A.12.06

Substituieren heißt ersetzen. Substitution wendet man an, wenn man zwei Terme sowie eine Zahl hat, wobei die Hochzahl des einen Terms doppelt so hoch wie die Hochzahl des anderen Terms ist. Nun substituiert (ersetzt) man einen Term durch “u”, den anderen durch “u²” und erhält eine Mitternachtsformel, aus welcher man u1 und u2 berechnet. Danach muss man resubstituieren, um wieder “x” zu erhalten. Das typische Beispiel für Substitution ist eine Gleichung, in welcher “x^4”, “x^2” und eine Zahl ohne “x” vorkommen. (Dieser Typ von Gleichung heißt: “biquadratisch”).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Quadratische Ungleichungen, Beispiel 2 | A.26.02

Eine quadratische Ungleichung ist natürlich eine Ungleichung, in welcher “x²” vorkommt. Es gibt zwei gute Vorgehensweisen dafür. Entweder über die quadratische Ergänzung oder man bestimmt die Nullstellen der quadratischen Parabel, überlegt, wie die Parabel liegt und weiß damit, in welchem Bereich die Parabel positiv oder negativ ist.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Lineares Wachstum berechnen, Beispiel 1 | A.30.01

Das lineare Wachstum ist sehr, sehr einfach. Es handelt sich hierbei einen Bestand mit einer gleichmäßigen Entwicklung, es kommt also in jeder Zeitspanne immer die gleiche Menge dazu (oder geht weg). Das lineare Wachstum wird durch eine Gerade beschrieben, der Ansatz lautet also: B(t)=m*t+b


Dieses Material ist Teil einer Sammlung