Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Tangentialebene: Tangente einer mehrdimensionalen Funktion, Beispiel 2 | A.51.03

Eine Tangente ist bei einer Funktion mit mehreren Variablen keine Gerade, sondern eine Tangentialebene oder ein Tangentialraum (Letzteres brauchen Sie vermutlich nie). Es gibt recht viele Ansätze und Formeln dafür, die jedoch letztendlich alle auf das Gleiche führen. In jedem Fall braucht man die partiellen (ersten) Ableitungen der Funktion. Wir verwenden eine recht einfache Formel zur Berechnung.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Funktionen strecken: so wird’s gemacht, Beispiel 2 | A.23.02

Wie kann man eine Funktion strecken? Man kann sie um den Faktor “c” in y-Richtung strecken, indem man die Funktion mit dieser Zahl “c” multipliziert. (Aus “f(x)” wird “c*f(x)”). Man streckt eine Funktion um den Faktor “d” in x-Richtung, indem man jeden Buchstaben “x” der Funktion durch “x/d” ersetzt. (Aus “x” wird “x/d”). Bemerkung: Ist ein Streckfaktor kleiner als 1, nennt man den Vorgang “Funktion stauchen” (die Funktion wird also gequetscht, nicht gestreckt). Ist ein Streckfaktor negativ, wird die Funktion zusätzlich noch an der x bzw. y-Achse gespiegelt.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Funktionen spiegeln an der x-Achse, an der y-Achse oder am Ursprung, Beispiel 2 | A.23.03

Will man eine Funktion spiegeln, so ist ein Minuszeichen entscheidend. Bei einer Achsenspiegelung an der y-Achse, muss man jede Variable “x” der Funktion durch “-x” ersetzt. Man spiegelt eine Funktion an der x-Achse, indem man vor die Funktion ein Minus setzt (aus “f(x)” wird “-f(x)”). Braucht man eine Punktspiegelung von einer Funktion am Ursprung, so erhält man das durch eine Achsenspiegelung an der x-Achse UND einer an der y-Achse (aus “f(x)” wird “-f(-x)”).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Funktionen spiegeln über Formel | A.23.04

Beim Spiegeln von Funktionen an einer senkrechten Gerade der Form x=a, wird in der Funktion f(x) jeder Buchstabe “x” durch “2a-x” ersetzt. Benötigt man die Spiegelungen an einer waagerechten Geraden y=b, ist die gesuchte Funktion: g(x)=2b-f(x). Braucht man von einer Funktion die Punktspiegelung an einem Punkt S(a|b), so entspricht das zwei Achsenspiegelungen: nämlich der Spiegelung an der senkrechten Gerade x=a UND an der waagerechten Gerade y=b.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Funktionen spiegeln über Formel, Beispiel 2 | A.23.04

Beim Spiegeln von Funktionen an einer senkrechten Gerade der Form x=a, wird in der Funktion f(x) jeder Buchstabe “x” durch “2a-x” ersetzt. Benötigt man die Spiegelungen an einer waagerechten Geraden y=b, ist die gesuchte Funktion: g(x)=2b-f(x). Braucht man von einer Funktion die Punktspiegelung an einem Punkt S(a|b), so entspricht das zwei Achsenspiegelungen: nämlich der Spiegelung an der senkrechten Gerade x=a UND an der waagerechten Gerade y=b.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Mit Newton-Verfahren Nullstellen bestimmen | A.32.02

Es gibt in Mathe viele Gleichungen, die sich nicht lösen lassen. Das Newton-Verfahren (auch: Newton-Iteration) verwendet man, um Nullstellen einer Gleichung zumindest näherungsweise zu bestimmen. Für die Newtoniteration gibt es eine Formel. In diese Formel setzt man einen (beliebigen) x-Wert ein und erhält als Ergebnis ein besseren x-Wert, also einen x-Wert der näher an der tatsächlichen Nullstelle liegt. Dieses Ergebnis setzt man abermals in die Formel ein und erhält einen noch besseren x-Wert. Das Ganze kann man beliebig oft wiederholen und erhält x-Werte die immer näher bei der tatsächlichen Nullstelle liegen. So ein Verfahren nennt man Iteration. Zwar hat das Newtonverfahren auch ein paar Macken, im Großen und Ganzen ist es jedoch wahrscheinlich das beste und schnellste Verfahren, um Gleichungen zu lösen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Punkt an Punkt spiegeln; Spiegelpunkt; Symmetriepunkt, Beispiel 2 | A.01.05

Einen Punkt spiegelt man an einem zweiten, indem man sich beide ins Koordinatensystem zeichnet und dann einfach “per Hingucken” löst. Selbstverständlich gibt es auch eine Formel für die Punkt-Spiegelung, die man anwenden kann (falls man möchte). Falls P(a|b) der Punkt ist, den man spiegeln möchte und S(u|v) der Punkt an welchem gespiegelt werden soll (sozusagen der Mittelpunkt oder Symmetriepunkt), so berechnet man die Koordinaten vom Spiegelpunkt (dem “Ergebnispunkt”) T(x|y) folgendermaßen: x=2*u-a und y=2*v-b


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Punkt an Punkt spiegeln; Spiegelpunkt; Symmetriepunkt, Beispiel 4 | A.01.05

Einen Punkt spiegelt man an einem zweiten, indem man sich beide ins Koordinatensystem zeichnet und dann einfach “per Hingucken” löst. Selbstverständlich gibt es auch eine Formel für die Punkt-Spiegelung, die man anwenden kann (falls man möchte). Falls P(a|b) der Punkt ist, den man spiegeln möchte und S(u|v) der Punkt an welchem gespiegelt werden soll (sozusagen der Mittelpunkt oder Symmetriepunkt), so berechnet man die Koordinaten vom Spiegelpunkt (dem “Ergebnispunkt”) T(x|y) folgendermaßen: x=2*u-a und y=2*v-b


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Fläche und Flächeninhalt eines Dreiecks mit Flächeninhaltsformel berechnen, Beispiel 1 - A.03.04

Es gibt tatsächlich auch eine stupide Formel für Dreiecksflächen. Stupid im Sinne von: man muss bei dieser Flächeninhaltsformel nichts denken. Man setzt einfach nur die Koordinaten der Eckpunkte des Dreiecks ein und erhält die Dreiecksfläche. Die Formel für die Fläche lautet: A=½*[x1*(y2-y3)+x2*(y3-y1)+x3*(x1-y2)]. Hierbei sind (x1 - y1), (x2 - y2) und (x3 - y3) die Koordinaten der Eckpunkte des Dreiecks (die Reihenfolge spielt keine Rolle).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Parabelformen: Normalform, Scheitelform, Linearfaktorform LFF, Beispiel 2 - A.04.03

Parabeln gibt es in drei Formen: 1) die häufigste und wichtigste ist die "allgemeine Form" oder "Normalform" y=ax²+bx+c 2) die Scheitelform verwendet man, wenn der Scheitelpunkt gegeben ist oder man den Scheitelpunkt braucht y=a*(x-xs)²+ys [xs und ys sind hierbei die x- und y-Koordinaten des Scheitelpunkts] 3) die Linearfaktorform verwendet man manchmal, wenn es um die Nullstellen der Parabel geht. y=a*(x-x1)(x-x2) [hierbei sind x1 und x2 die Nullstellen der Parabel]. Sie sollten die drei Parabelformen beherrschen (vor allem die ersten beiden) und wissen, wie man die eine in die andere umwandelt.


Dieses Material ist Teil einer Sammlung