Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Nullstellen von ganzrationalen Funktionen berechnen über Horner-Schema, Beispiel 2 | A.46.02

Wenn man bei der Berechnung einer Nullstelle kein normales Verfahren anwenden kann (nicht Ausklammern, nicht Substituieren, nicht Mitternachtsformel anwenden kann), bleibt nur das Horner-Schema als Notlösung übrig (oder die Polynomdivision, welche eine andere Variante des Horner-Schemas ist). Dafür muss man zuerst eine Nullstelle der Gleichung raten und anschließend ein festgelegtes Verfahren anwenden um im Ergebnis ein einfacheres Polynom zu erhalten, welches man nun erneut auf Nullstellen untersucht.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Tangentialebene: Tangente einer mehrdimensionalen Funktion, Beispiel 2 | A.51.03

Eine Tangente ist bei einer Funktion mit mehreren Variablen keine Gerade, sondern eine Tangentialebene oder ein Tangentialraum (Letzteres brauchen Sie vermutlich nie). Es gibt recht viele Ansätze und Formeln dafür, die jedoch letztendlich alle auf das Gleiche führen. In jedem Fall braucht man die partiellen (ersten) Ableitungen der Funktion. Wir verwenden eine recht einfache Formel zur Berechnung.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Parabel verschieben, Beispiel 4 - A.04.08

Eine Parabel verschiebt man am einfachsten, indem man zuerst den Scheitelpunkt der Parabel berechnet (z.B. über quadratische Ergänzung), diesen Scheitelpunkt dann verschiebt und mit dem verschobenen Scheitelform dann wieder die Scheitelform der Parabel aufstellt (und die dann in Normalform umwandelt, falls des gewünscht ist).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Parabel strecken, Beispiel 4 | A.04.09

Strecken und Stauchen sind in Mathe mehr oder weniger das Gleiche. Staucht man eine Parabel (quetscht sie also zusammen) entspricht das einem Strecken mit einem Streckfaktor von weniger als 1. Man kann Parabel auf unterschiedliche Weisen strecken. Am wichtigsten ist die Streckung in y-Richtung. Hier muss man unterscheiden, ob man die Parabel von der x-Achse aus oder vom Scheitelpunkt aus streckt. Streckt man die Parabel an der x-Achse, ist das sehr einfach. Man multipliziert die ganze Parabel einfach mit dem Streckfaktor (egal in welcher Form die Parabel gegeben ist). Streckt man die Parabel vom Scheitelpunkt aus, muss man die Parabel in Scheitelform bringen [y=a*(x-xs)²+ys] und multipliziert nun nur “a” mit dem Streckfaktor. Anschließend kann man die Scheitelform wieder in Normalform umwandeln.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Steckbriefaufgaben zu Normalparabel und Scheitelpunkt, Beispiel 1 | A.04.14

Hat man von einer Normalparabel nur den Scheitelpunkt gegeben und muss die Parabelgleichung bestimmt (man nennt solche Aufgaben auch “Steckbriefaufgabe”), so setzt man die Koordinaten des Scheitelpunkts in die Scheitelform ein und ist fertig (“a” ist ja 1 oder -1, je nachdem ob die Parabel noch oben oder unten geöffnet ist). Eventuell kann man die Scheitelform noch in die Normalform umwandeln.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Steckbriefaufgaben zu Normalparabel und Scheitelpunkt, Beispiel 3 | A.04.14

Hat man von einer Normalparabel nur den Scheitelpunkt gegeben und muss die Parabelgleichung bestimmt (man nennt solche Aufgaben auch “Steckbriefaufgabe”), so setzt man die Koordinaten des Scheitelpunkts in die Scheitelform ein und ist fertig (“a” ist ja 1 oder -1, je nachdem ob die Parabel noch oben oder unten geöffnet ist). Eventuell kann man die Scheitelform noch in die Normalform umwandeln.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Steckbriefaufgaben zu Normalparabel und zwei Punkten, Beispiel 3 - A.04.15

Hat man von einer Normalparabel zwei Punkte gegeben und muss die Parabelgleichung bestimmt (man nennt solche Aufgaben auch "Steckbriefaufgabe"), so beginnt man mit dem Ansatz y=x²+px+q und setzt man die Koordinaten beider Punkte ein. Für jeden Punkt erhält man eine Gleichung. Beide Gleichungen zieht man von einander ab, so dass der Parameter "q" weg fällt und erhält "p". Setzt man nun "p" in eine der Gleichungen ein, erhält man "q". Nun "p" und "q" in y=x²+px+q einsetzen und sich über die fertige Parabelgleichung freuen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Steckbriefaufgaben zu Parabel mit drei Punkten - A.04.17

Hat man von einer beliebigen Parabel drei Punkte gegeben und muss die Parabelgleichung bestimmt (man nennt solche Aufgaben auch "Steckbriefaufgabe"), so beginnt man mit dem Ansatz y=ax²+bx+c und setzt man die Koordinaten aller drei Punkte ein. Für jeden Punkt erhält man eine Gleichung. (Oft erhält man aus einer Gleichung schon direkt "c"). Die erhaltenen Gleichungen muss man nun irgendwie so miteinander verrechnen, dass man "a", "b" und "c" erhält. (Zur Frage WIE das geht, siehe evtl. Kap G.02 und Unterkapitel).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Steckbriefaufgaben zu Parabel mit Nullstellen, Beispiel 1 - A.04.18

Hat man von einer Parabel beide Nullstellen gegeben und muss die Parabelgleichung bestimmt (man nennt solche Aufgaben auch "Steckbriefaufgabe"), so gibt es zwei mögliche Vorgehensweisen. Die komplizierte Methode wäre, die Nullstellen als normale Punkte zu betrachten und dann ein Gleichungssystem aufzustellen (siehe A.04.15 oder A.04.17). Die geschicktere Methode wäre die x-Werte der Nullstellen in die Linearfaktorform einzusetzen [y=a(x-x1)(x-x2), wobei x1 und x2 die Nullstellen sind]. Weiß man, dass es sich um eine Normalparabel handelt, kennt man auch schon "a" (a=1 oder a=-1). Ist es keine Normalparabel, so muss noch ein weiterer Punkt gegeben sein. Dessen Koordinaten setzt man zusätzlich in die Linearfaktorform ein und berechnet nun "a". Wie dem auch sei, nun setzt man "a", "x1" und "x2" in die Linearfaktorform ein und ist fertig. Evtl. kann man die Klammern ausmultiplizieren um die Normalform der Parabel zu erhalten.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Steckbriefaufgaben zu Parabel mit Nullstellen, Beispiel 3 - A.04.18

Hat man von einer Parabel beide Nullstellen gegeben und muss die Parabelgleichung bestimmt (man nennt solche Aufgaben auch "Steckbriefaufgabe"), so gibt es zwei mögliche Vorgehensweisen. Die komplizierte Methode wäre, die Nullstellen als normale Punkte zu betrachten und dann ein Gleichungssystem aufzustellen (siehe A.04.15 oder A.04.17). Die geschicktere Methode wäre die x-Werte der Nullstellen in die Linearfaktorform einzusetzen [y=a(x-x1)(x-x2), wobei x1 und x2 die Nullstellen sind]. Weiß man, dass es sich um eine Normalparabel handelt, kennt man auch schon "a" (a=1 oder a=-1). Ist es keine Normalparabel, so muss noch ein weiterer Punkt gegeben sein. Dessen Koordinaten setzt man zusätzlich in die Linearfaktorform ein und berechnet nun "a". Wie dem auch sei, nun setzt man "a", "x1" und "x2" in die Linearfaktorform ein und ist fertig. Evtl. kann man die Klammern ausmultiplizieren um die Normalform der Parabel zu erhalten.


Dieses Material ist Teil einer Sammlung