Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Komplizierte Exponentialfunktionen ableiten, Beispiel 3 | A.41.04

Bei hässlicheren Exponentialfunktionen kann man bei der Ableitung eigentlich nur noch zusätzlich die Produktregel oder Kettenregel auftauchen (ggf. noch Quotientenregel). Viel mehr Möglichkeiten gibt es nicht, was jedoch nicht heißt, dass alles immer nur einfach ist. Denken Sie bitte an die innere Ableitung, denn diese werden Sie mindestens ein bis zwei Mal pro Ableitung anwenden müssen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Exponentialfunktion integrieren bzw. aufleiten, Beispiel 1 | A.41.05

Das Integrieren von e-Termen läuft ähnlich ab, wie das Ableiten. In der Stammfunktion bleibt der e-Term komplett unverändert, die innere Ableitung (die Ableitung der Hochzahl) wird runter, in den Nenner geschrieben. Man führt also eine umgekehrte Kettenregel an, auch “lineare Substitution” genannt. Für die Stammfunktion F(x) (böse gesagt: die Aufleitung) kann man daher die Formel anwenden: f(x)=a*e^(bx+c) == F(x)=a/b*e^(bx+c).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Exponentialfunktion integrieren bzw. aufleiten, Beispiel 3 | A.41.05

Das Integrieren von e-Termen läuft ähnlich ab, wie das Ableiten. In der Stammfunktion bleibt der e-Term komplett unverändert, die innere Ableitung (die Ableitung der Hochzahl) wird runter, in den Nenner geschrieben. Man führt also eine umgekehrte Kettenregel an, auch “lineare Substitution” genannt. Für die Stammfunktion F(x) (böse gesagt: die Aufleitung) kann man daher die Formel anwenden: f(x)=a*e^(bx+c) == F(x)=a/b*e^(bx+c).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Komplizierte Exponentialfunktionen ableiten, Beispiel 1 | A.41.04

Bei hässlicheren Exponentialfunktionen kann man bei der Ableitung eigentlich nur noch zusätzlich die Produktregel oder Kettenregel auftauchen (ggf. noch Quotientenregel). Viel mehr Möglichkeiten gibt es nicht, was jedoch nicht heißt, dass alles immer nur einfach ist. Denken Sie bitte an die innere Ableitung, denn diese werden Sie mindestens ein bis zwei Mal pro Ableitung anwenden müssen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Exponentialfunktion integrieren bzw. aufleiten, Beispiel 2 | A.41.05

Das Integrieren von e-Termen läuft ähnlich ab, wie das Ableiten. In der Stammfunktion bleibt der e-Term komplett unverändert, die innere Ableitung (die Ableitung der Hochzahl) wird runter, in den Nenner geschrieben. Man führt also eine umgekehrte Kettenregel an, auch “lineare Substitution” genannt. Für die Stammfunktion F(x) (böse gesagt: die Aufleitung) kann man daher die Formel anwenden: f(x)=a*e^(bx+c) == F(x)=a/b*e^(bx+c).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Komplizierte Exponentialfunktionen ableiten, Beispiel 2 | A.41.04

Bei hässlicheren Exponentialfunktionen kann man bei der Ableitung eigentlich nur noch zusätzlich die Produktregel oder Kettenregel auftauchen (ggf. noch Quotientenregel). Viel mehr Möglichkeiten gibt es nicht, was jedoch nicht heißt, dass alles immer nur einfach ist. Denken Sie bitte an die innere Ableitung, denn diese werden Sie mindestens ein bis zwei Mal pro Ableitung anwenden müssen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Exponentialfunktion integrieren bzw. aufleiten | A.41.05

Das Integrieren von e-Termen läuft ähnlich ab, wie das Ableiten. In der Stammfunktion bleibt der e-Term komplett unverändert, die innere Ableitung (die Ableitung der Hochzahl) wird runter, in den Nenner geschrieben. Man führt also eine umgekehrte Kettenregel an, auch “lineare Substitution” genannt. Für die Stammfunktion F(x) (böse gesagt: die Aufleitung) kann man daher die Formel anwenden: f(x)=a*e^(bx+c) == F(x)=a/b*e^(bx+c).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Komplizierte Exponentialfunktionen ableiten | A.41.04

Bei hässlicheren Exponentialfunktionen kann man bei der Ableitung eigentlich nur noch zusätzlich die Produktregel oder Kettenregel auftauchen (ggf. noch Quotientenregel). Viel mehr Möglichkeiten gibt es nicht, was jedoch nicht heißt, dass alles immer nur einfach ist. Denken Sie bitte an die innere Ableitung, denn diese werden Sie mindestens ein bis zwei Mal pro Ableitung anwenden müssen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Komplizierte Exponentialfunktionen ableiten, Beispiel 1 | A.41.04

Bei hässlicheren Exponentialfunktionen kann man bei der Ableitung eigentlich nur noch zusätzlich die Produktregel oder Kettenregel auftauchen (ggf. noch Quotientenregel). Viel mehr Möglichkeiten gibt es nicht, was jedoch nicht heißt, dass alles immer nur einfach ist. Denken Sie bitte an die innere Ableitung, denn diese werden Sie mindestens ein bis zwei Mal pro Ableitung anwenden müssen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Komplizierte Exponentialfunktionen ableiten, Beispiel 1 | A.41.04

Bei hässlicheren Exponentialfunktionen kann man bei der Ableitung eigentlich nur noch zusätzlich die Produktregel oder Kettenregel auftauchen (ggf. noch Quotientenregel). Viel mehr Möglichkeiten gibt es nicht, was jedoch nicht heißt, dass alles immer nur einfach ist. Denken Sie bitte an die innere Ableitung, denn diese werden Sie mindestens ein bis zwei Mal pro Ableitung anwenden müssen.


Dieses Material ist Teil einer Sammlung