Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Volumen Kegel und Volumen Zylinder berechnen | A.21.05

Einen Kegel erhält man, wenn ein Dreieck um eine Seite rotiert, einen Zylinder erhält man, wenn ein Rechteck um eine der Seiten rotiert. Ein Kegelvolumen berechnet man über: V=pi/3*r²*h, ein Zylindervolumen berechnet man über V=pi*r²*h. Man braucht also in beiden Fällen den Radius und die Höhe. Beides sind im Normalfall waagerechte oder senkrechte Strecken, welche man also über die Differenz der x-Werte bzw. der y-Werte berechnet. Alles wird in die Volumenformel eingesetzt und das Maximum/Minimum berechnet. Schwuppdiwupp ist der größte Kegel (bzw. der größte Zylinder) da.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Volumen Kegel und Volumen Zylinder berechnen, Beispiel 3 | A.21.05

Einen Kegel erhält man, wenn ein Dreieck um eine Seite rotiert, einen Zylinder erhält man, wenn ein Rechteck um eine der Seiten rotiert. Ein Kegelvolumen berechnet man über: V=pi/3*r²*h, ein Zylindervolumen berechnet man über V=pi*r²*h. Man braucht also in beiden Fällen den Radius und die Höhe. Beides sind im Normalfall waagerechte oder senkrechte Strecken, welche man also über die Differenz der x-Werte bzw. der y-Werte berechnet. Alles wird in die Volumenformel eingesetzt und das Maximum/Minimum berechnet. Schwuppdiwupp ist der größte Kegel (bzw. der größte Zylinder) da.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Volumen Kegel und Volumen Zylinder berechnen, Beispiel 2 | A.21.05

Einen Kegel erhält man, wenn ein Dreieck um eine Seite rotiert, einen Zylinder erhält man, wenn ein Rechteck um eine der Seiten rotiert. Ein Kegelvolumen berechnet man über: V=pi/3*r²*h, ein Zylindervolumen berechnet man über V=pi*r²*h. Man braucht also in beiden Fällen den Radius und die Höhe. Beides sind im Normalfall waagerechte oder senkrechte Strecken, welche man also über die Differenz der x-Werte bzw. der y-Werte berechnet. Alles wird in die Volumenformel eingesetzt und das Maximum/Minimum berechnet. Schwuppdiwupp ist der größte Kegel (bzw. der größte Zylinder) da.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Volumen Kegel und Volumen Zylinder berechnen, Beispiel 1 | A.21.05

Einen Kegel erhält man, wenn ein Dreieck um eine Seite rotiert, einen Zylinder erhält man, wenn ein Rechteck um eine der Seiten rotiert. Ein Kegelvolumen berechnet man über: V=pi/3*r²*h, ein Zylindervolumen berechnet man über V=pi*r²*h. Man braucht also in beiden Fällen den Radius und die Höhe. Beides sind im Normalfall waagerechte oder senkrechte Strecken, welche man also über die Differenz der x-Werte bzw. der y-Werte berechnet. Alles wird in die Volumenformel eingesetzt und das Maximum/Minimum berechnet. Schwuppdiwupp ist der größte Kegel (bzw. der größte Zylinder) da.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Trigonometrie | Stereometrie: Kegel, Kegelvolumen, Kegelfläche, Mantelfläche berechnen; Beispiel 1 | T.06.10

Ein Kegel hat unten einen Kreis und oben eine Spitze. Das Volumen berechnet man über V=1/3*r²*h. Die Oberfläche setzt sich aus dem Grundkreis und der Mantelfläche zusammen. Letztere berechnet man über M=pi*r*s, wobei s die Seitenlinie ist. Alles ganz lustig und toll und spannend, wie bei jedem Spitzkörper.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Trigonometrie | Stereometrie: Kegel, Kegelvolumen, Kegelfläche, Mantelfläche berechnen; Beispiel 2 | T.06.10

Ein Kegel hat unten einen Kreis und oben eine Spitze. Das Volumen berechnet man über V=1/3*r²*h. Die Oberfläche setzt sich aus dem Grundkreis und der Mantelfläche zusammen. Letztere berechnet man über M=pi*r*s, wobei s die Seitenlinie ist. Alles ganz lustig und toll und spannend, wie bei jedem Spitzkörper.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Trigonometrie | Stereometrie: Kegel, Kegelvolumen, Kegelfläche, Mantelfläche berechnen | T.06.10

Ein Kegel hat unten einen Kreis und oben eine Spitze. Das Volumen berechnet man über V=1/3*r²*h. Die Oberfläche setzt sich aus dem Grundkreis und der Mantelfläche zusammen. Letztere berechnet man über M=pi*r*s, wobei s die Seitenlinie ist. Alles ganz lustig und toll und spannend, wie bei jedem Spitzkörper.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Trigonometrie | Stereometrie: Kegel, Kegelstumpf, Mantelfläche berechnen, Beispiel 3 | T.06.11

Einen Kegelstumpf erhält man, indem man von einem Kegel die Spitze parallel zur Grundfläche abschneidet. Das Volumen berechnet man über die Differenz zwischen kleinen und großen Kegel, die Oberfläche besteht aus den beiden Grundkreisen und der Mantelfläche. Formeln verwenden und gut ist´s.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Trigonometrie | Stereometrie: Kegel, Kegelvolumen, Kegelfläche, Mantelfläche berechnen; Beispiel 3 | T.06.10

Ein Kegel hat unten einen Kreis und oben eine Spitze. Das Volumen berechnet man über V=1/3*r²*h. Die Oberfläche setzt sich aus dem Grundkreis und der Mantelfläche zusammen. Letztere berechnet man über M=pi*r*s, wobei s die Seitenlinie ist. Alles ganz lustig und toll und spannend, wie bei jedem Spitzkörper.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Trigonometrie | Stereometrie: Kegel, Kegelstumpf, Mantelfläche berechnen, Beispiel 1 | T.06.11

Einen Kegelstumpf erhält man, indem man von einem Kegel die Spitze parallel zur Grundfläche abschneidet. Das Volumen berechnet man über die Differenz zwischen kleinen und großen Kegel, die Oberfläche besteht aus den beiden Grundkreisen und der Mantelfläche. Formeln verwenden und gut ist´s.


Dieses Material ist Teil einer Sammlung