Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mit L'Hospital Grenzwerte bestimmen, Beispiel 6 | A.52.02

L'Hospital wendet man an, wenn man für eine Grenzwertberechnung einen Bruch erhält in welchem sowohl Zähler als auch Nenner beide gegen Unendlich oder beide gegen Null gehen. Vorgehensweise: Man leitet Zähler und Nenner jeweils getrennt ab und betrachtet den neuen Bruch (ggf. nochmals die L'Hospitalsche Regel anwenden).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Krümmungsradius und Bogenlänge einer Kurve bestimmen | A.11.08

Die Bogenlänge einer Kurve und der Krümmungsradius einer Kurve werden durch recht hässliche Formeln bestimmt. Allerdings kann man “hässlich” auch so betrachten: man hackt das in Taschenrechner ein (auch wenn´s etwas länger dauert) und ist fertig. Zum Glück muss man mit diesen Formeln sonst nicht viel machen. Wenn man mit dem Taschenrechner umgehen kann, ist das Ganze doch recht human.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Rotationsvolumen berechnen, Beispiel 2 | A.18.06

Bei Rotation einer Funktion um die x-Achse, entsteht meist ein komischer Rotationskörper, der keinen Namen (was diesen natürlich psychisch sehr belastet). Diesen berechnet man mit einer einfachen Formel, die besagt, dass man die Funktion zuerst quadriert, dann erst integriert. Integralgrenzen einsetzen und das Ergebnis mit Pi multiplizieren. (Rotiert eine Funktion um die y-Achse, macht man das Gleiche mit der Umkehrfunktion. Dieses wird hier nicht erklärt.)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Mittelwert und Durchschnitt einer Funktion berechnen, Beispiel 2 | A.18.07

Ein mittlerer Funktionswert oder durchschnittlicher y-Wert ist nichts anderes als ein Mittelwert bzw. ein Durchschnitt. Man berechnet diesen mit einer recht einfachen Formel, die über´s Integral geht.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Dreiecksfläche berechnen, Beispiel 3 | A.18.08

Sind Flächen von Geraden umschlossen, kann man diese Flächen oft als Dreiecksflächen angehen. Diese Dreiecksflächen kann man über A=1/2*g*h bestimmen (KANN man, MUSS man nicht!). Das Integral einer Geraden mit den Koordinatenachsen ist z.B. oft gefragt, das ist ein rechtwinkliges Dreieck.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Integralfunktion bestimmen, Beispiel 1 | A.18.10

Eine Integralfunktion ist (blöd gesagt) einfach nur ein Integral, welches als Grenze einen Parameter hat. Es gibt nun zwei wichtige Eigenschaften: 1). Die Ableitung einer Integralfunktion ist die Funktion die im Inneren des Integrals steht. 2). Eine Integralfunktion hat eine Nullstelle immer bei der (bekannten) Integralgrenze.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Integralfunktion bestimmen, Beispiel 6 | A.18.10

Eine Integralfunktion ist (blöd gesagt) einfach nur ein Integral, welches als Grenze einen Parameter hat. Es gibt nun zwei wichtige Eigenschaften: 1). Die Ableitung einer Integralfunktion ist die Funktion die im Inneren des Integrals steht. 2). Eine Integralfunktion hat eine Nullstelle immer bei der (bekannten) Integralgrenze.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Kurvendiskussion Beispiel 1: Symmetrie zur y-Achse und Berührpunkte mit der x-Achse | A.19.01

Wir führen eine Funktionsanalyse einer Funktion durch, die Symmetrie zur y-Achse aufweist und zwei Berührpunkte mit der x-Achse aufweist.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Kurvendiskussion Beispiel 1e: Wendepunkte berechnen | A.19.01

Wir führen eine Funktionsanalyse einer Funktion durch, die Symmetrie zur y-Achse aufweist und zwei Berührpunkte mit der x-Achse aufweist.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Kurvendiskussion Beispiel 2d: Extrema berechnen | A.19.02

In dieser Funktionsuntersuchung passiert erst mal nichts Außergewöhnliches, außer dem Auftauchen dreifachen Nullstelle (= Sattelpunkt). Als “Bonbon” bestimmen wir die Wendetangente und ergötzen uns an einer einfachen Flächenberechnung.


Dieses Material ist Teil einer Sammlung