Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Nullstellen von komplizierten Exponentialfunktionen berechnen, Beispiel 6 | A.41.02

Bei nicht so ganz einfachen Exponentialgleichungen kann man eigentlich nur ausklammern (den Satz vom Nullprodukt anwenden) oder substituieren. Eventuell muss man auch zuerst mit dem Nenner multiplizieren und erst dann Substitution anwenden,


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Schaubild einer Exponentialfunktion erstellen, Beispiel 1 | A.41.09

Um das Schaubild einer Exponential-Funktion zu skizzieren oder zu zeichnen, kann man entweder eine ausführliche Wertetabelle machen oder man bestimmt die Asymptoten, eventuell noch Nullstellen, vielleicht berechnet man auch noch zu verschiedenen x-Werten die zugehörigen y-Werte. Das müsste ausreichen, um einen ordentlichen Graphen zu erstellen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Zweite Lösung einer trigonometrischen Gleichung bestimmen, Beispiel 1 | A.42.03

Wenn man eine Gleichung in der Trigonometrie von Hand lösen muss (bzw. mit einem einfachen Taschenrechner), steht man normalerweise irgendwann mal vor dem Problem, dass der Taschenrechner einem eine einzige Lösung liefert. Tatsächlich gibt es jedoch normalerweise schon innerhalb einer einzigen Periode zwei Lösungen. Wie kommt man auf die zweite Lösung? 1.Zuerst löst man nach sin(...) oder cos(...) auf. 2.Man substituiert das Argument (d.h. Man wendet Substitution an, in dem man das Innere der Klammer “u” nennt). 3.Man bestimmt mittels Taschenrechner oder Wertetabelle einen Wert von “u”. 4.(Der entscheidende Schritt) Bei sin: die zweite Lösung lautet: u2=Pi-u1. Bei cos: u2=-u1. 5.Man resubstituiert, um aus “u1” und “u2” die Werte “x1” und “x2” zu erhalten. 6.erhaltenen x-Werte kann man beliebig oft um je eine Periode nach links oder rechts verschieben (falls das notwendig ist).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Schaubild einer trigonometrischen Funktion erstellen | A.42.09

Man beginnt mit der Mittellinie d und der Amplitude a. Mit deren Hilfe weiß man nun in welchem Bereich sich die Funktion bewegt (wie weit die Funktion hoch und wie weit sie runter geht). Es geht weiter mit c, womit man weiß, wo die Funktion “beginnt”. Als Letztes bestimmt man die Periode mit Hilfe von b. Nun kann man Hoch- und Tief- und die Wendepunkte bestimmen und damit die Funktion skizzieren.


Dieses Material ist Teil einer Sammlung

Text

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Schaubild einer Wurzelfunktion erstellen, Beispiel 3 | A.45.07

Wurzel-Funktionen zeichnet man über das asymptotische Verhalten an den Grenzen des Definitionsbereichs. Falls man Nullstellen oder Hoch-, Tief- oder Wendepunkte kennt, zeichnet man diese ebenfalls ein und sollte nun die Funktion zeichnen können. Falls notwendig, kann man noch eine Wertetabelle machen, also noch ein paar Punkte einzeichnen.


Dieses Material ist Teil einer Sammlung

Text

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Aus dem Schaubild einer Wurzelfunktion die Funktionsgleichung erstellen, Beispiel 1 | A.45.08

Beim Zeichnen von Wurzelfunktionen, ist der “Anfangspunkt” wichtig. Nennen wir den Punkt R mit den Koordinaten R(r|s). Zeigt das Schaubild der Wurzel nach rechts, so ist der Ansatz: f(x)=a·wurzelaus(x-r)+s. Zeigt das Schaubild der Wurzel nach links, so ist der Ansatz: f(x)=a·wurzelaus(-x+r)+s. Den Parameter “a” erhält man, indem man einen beliebigen Punkt einsetzt.


Dieses Material ist Teil einer Sammlung

Text

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Funktionsanalyse einer Wurzelfunktion: Übungen und Beispiele, Beispiel 2 | A.45.09

Ein paar Beispiele von Funktionsuntersuchungen von Wurzel-Funktionen. (Wir betrachten Nullstellen, Ableitungen, Extrem- und Wendepunkte, die Definitionsmenge, alle Asymptoten und fertigen eine Skizze.)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Nullstellen von ganzrationalen Funktionen berechnen über Horner-Schema | A.46.02

Wenn man bei der Berechnung einer Nullstelle kein normales Verfahren anwenden kann (nicht Ausklammern, nicht Substituieren, nicht Mitternachtsformel anwenden kann), bleibt nur das Horner-Schema als Notlösung übrig (oder die Polynomdivision, welche eine andere Variante des Horner-Schemas ist). Dafür muss man zuerst eine Nullstelle der Gleichung raten und anschließend ein festgelegtes Verfahren anwenden um im Ergebnis ein einfacheres Polynom zu erhalten, welches man nun erneut auf Nullstellen untersucht.


Dieses Material ist Teil einer Sammlung