Suchergebnis für: ** Zeige Treffer 1 - 10 von 2857

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Gebrochen-rationale Funktionen / Bruchfunktion: Nullstellen berechnen, Beispiel 3 | A.43.01

Die Schnittpunkte einer Bruchfunktion mit der x-Achse bestimmt man, in dem man die Funktion mit dem Nenner multipliziert. Damit ist man den Bruch los und führt die Berechnung der Nullstellen auf die eine viel einfachere ganzrationale Funktion zurück.


Dieses Material ist Teil einer Sammlung

Text

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Schaubild einer gebrochen-rationalen Funktion erstellen, Beispiel 3 | A.43.08

Gebrochen-rationale Funktionen zeichnet man am besten über die Asymptoten. Man zeichnet also zuerst die Asymptoten, danach eventuell Nullstellen (falls man Hoch-, Tief- oder Wendepunkte kennt zeichnet man diese ebenfalls ein) und versucht die Funktion zu zeichnen. Falls notwendig, kann man noch eine Wertetabelle machen, also noch ein paar Punkte einzeichnen. Das sollte für das Zeichnen ausreichen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Funktionsanalyse gebrochen-rationale Funktion mit Beispielen und Übungen, Beispiel 2 | A.43.10

Ein paar Beispiele von Funktionsuntersuchungen von gebrochen-rationalen Funktionen. (Wir betrachten Nullstellen, Ableitungen, Extrem- und Wendepunkte, alle Asymptoten und fertigen eine Skizze.) In den ersten beiden Funktionen gibt es Polstellen ohne Vorzeichenwechsel (=ohne VZW).


Dieses Material ist Teil einer Sammlung

Text

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Aus dem Schaubild einer ganzrationalen Funktion die Funktionsgleichung erstellen, Beispiel 2

Kann man aus dem Schaubild so viele Nullstellen ablesen, wie der Grad der Funktion ist, stellt man die Funktion einfach über die Linearfaktoren auf (siehe Kap.3.6.3). Kann man weniger Nullstellen ablesen, als der Grad ist, muss man, um die Funktionsgleichung zu erhalten, Hoch-, Tief-, Wendepunkte oder einfache, normale Punkte der Funktion ablesen und die Funktion über Bedingungen aufstellen (siehe Kap.3.6.5).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Exponentialfunktion: kurze Einführung in die e-Funktion | A.41

Eine Exponentialfunktion ist eine Funktion, in welcher die Unbekannte “x” in der Hochzahl steht. Die mit Abstand wichtigste Exponentialfunktion ist die e-Funktion, welche die Eulersche Zahl (also e=2,718...) als Basis hat.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Exponentialfunktion: Nullstellen berechnen, Beispiel 1 | A.41.01

Nullstellen, der Schnittpunkt mit der x-Achse, führt natürlich auf das Problem einer Exponentialgleichung zurück. Um Exponentialgleichungen zu lösen, muss man zuerst nach dem e-Term auflösen. Danach wendet man den “ln” an (natürlicher Logarithmus). Vom e-Term bleibt nur noch der Exponent übrig und man kommt an “x” ran.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Exponentialfunktion: Nullstellen berechnen, Beispiel 6 | A.41.01

Nullstellen, der Schnittpunkt mit der x-Achse, führt natürlich auf das Problem einer Exponentialgleichung zurück. Um Exponentialgleichungen zu lösen, muss man zuerst nach dem e-Term auflösen. Danach wendet man den “ln” an (natürlicher Logarithmus). Vom e-Term bleibt nur noch der Exponent übrig und man kommt an “x” ran.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Schaubild einer Exponentialfunktion erstellen | A.41.09

Um das Schaubild einer Exponential-Funktion zu skizzieren oder zu zeichnen, kann man entweder eine ausführliche Wertetabelle machen oder man bestimmt die Asymptoten, eventuell noch Nullstellen, vielleicht berechnet man auch noch zu verschiedenen x-Werten die zugehörigen y-Werte. Das müsste ausreichen, um einen ordentlichen Graphen zu erstellen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Schaubild einer Exponentialfunktion erstellen, Beispiel 2 | A.41.09

Um das Schaubild einer Exponential-Funktion zu skizzieren oder zu zeichnen, kann man entweder eine ausführliche Wertetabelle machen oder man bestimmt die Asymptoten, eventuell noch Nullstellen, vielleicht berechnet man auch noch zu verschiedenen x-Werten die zugehörigen y-Werte. Das müsste ausreichen, um einen ordentlichen Graphen zu erstellen.


Dieses Material ist Teil einer Sammlung