Suchergebnis für: ** Zeige Treffer 1 - 10 von 2857

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Nullstellen von ganzrationalen Funktionen berechnen über Polynomdivision, Beispiel 1 | A.46.01

Wenn man bei der Berechnung einer Nullstelle kein normales Verfahren anwenden kann (nicht Ausklammern, nicht Substituieren, nicht Mitternachtsformel anwenden kann), bleibt nur die Polynomdivision als Notlösung übrig (oder das Horner-Schema, welches eine andere Variante der Polynomdivision ist). Dafür muss man zuerst eine Nullstelle der Gleichung raten und anschließend die Gleichung durch (x-Nullstelle) teilen. Das Ergebnis ist ein einfacheres Polynom, welches man nun erneut auf Nullstellen untersucht.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Nullstellen von ganzrationalen Funktionen berechnen über Polynomdivision, Beispiel 3 | A.46.01

Wenn man bei der Berechnung einer Nullstelle kein normales Verfahren anwenden kann (nicht Ausklammern, nicht Substituieren, nicht Mitternachtsformel anwenden kann), bleibt nur die Polynomdivision als Notlösung übrig (oder das Horner-Schema, welches eine andere Variante der Polynomdivision ist). Dafür muss man zuerst eine Nullstelle der Gleichung raten und anschließend die Gleichung durch (x-Nullstelle) teilen. Das Ergebnis ist ein einfacheres Polynom, welches man nun erneut auf Nullstellen untersucht.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Linearfaktorzerlegung | A.46.03

Linearfaktoren sind Klammern, die mit “mal” verbunden sind. In den Klammern darf “x” keine Hochzahl haben. Braucht man von einer Funktion in Linearfaktorzerlegung, hat die Funktion die Form: f(x)=a·(x-x1)·(x-x2)·(x-x3)·.... x1, x2, x3, … sind hierbei die Nullstellen der Funktion. Fazit: Man braucht die Nullstellen einer Funktion, dann kann man die Linearfaktorzerlegung schnell aufstellen. (Den Parameter “a” erhält man zum Schluss recht einfach, in dem man einen beliebigen Punkt einsetzt).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Linearfaktorzerlegung, Beispiel 1 | A.46.03

Linearfaktoren sind Klammern, die mit “mal” verbunden sind. In den Klammern darf “x” keine Hochzahl haben. Braucht man von einer Funktion in Linearfaktorzerlegung, hat die Funktion die Form: f(x)=a·(x-x1)·(x-x2)·(x-x3)·.... x1, x2, x3, … sind hierbei die Nullstellen der Funktion. Fazit: Man braucht die Nullstellen einer Funktion, dann kann man die Linearfaktorzerlegung schnell aufstellen. (Den Parameter “a” erhält man zum Schluss recht einfach, in dem man einen beliebigen Punkt einsetzt).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Linearfaktorzerlegung, Beispiel 3 | A.46.03

Linearfaktoren sind Klammern, die mit “mal” verbunden sind. In den Klammern darf “x” keine Hochzahl haben. Braucht man von einer Funktion in Linearfaktorzerlegung, hat die Funktion die Form: f(x)=a·(x-x1)·(x-x2)·(x-x3)·.... x1, x2, x3, … sind hierbei die Nullstellen der Funktion. Fazit: Man braucht die Nullstellen einer Funktion, dann kann man die Linearfaktorzerlegung schnell aufstellen. (Den Parameter “a” erhält man zum Schluss recht einfach, in dem man einen beliebigen Punkt einsetzt).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Nullstellen von ganzrationalen Funktionen berechnen über Polynomdivision | A.46.01

Wenn man bei der Berechnung einer Nullstelle kein normales Verfahren anwenden kann (nicht Ausklammern, nicht Substituieren, nicht Mitternachtsformel anwenden kann), bleibt nur die Polynomdivision als Notlösung übrig (oder das Horner-Schema, welches eine andere Variante der Polynomdivision ist). Dafür muss man zuerst eine Nullstelle der Gleichung raten und anschließend die Gleichung durch (x-Nullstelle) teilen. Das Ergebnis ist ein einfacheres Polynom, welches man nun erneut auf Nullstellen untersucht.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Nullstellen von ganzrationalen Funktionen berechnen über Polynomdivision, Beispiel 2 | A.46.01

Wenn man bei der Berechnung einer Nullstelle kein normales Verfahren anwenden kann (nicht Ausklammern, nicht Substituieren, nicht Mitternachtsformel anwenden kann), bleibt nur die Polynomdivision als Notlösung übrig (oder das Horner-Schema, welches eine andere Variante der Polynomdivision ist). Dafür muss man zuerst eine Nullstelle der Gleichung raten und anschließend die Gleichung durch (x-Nullstelle) teilen. Das Ergebnis ist ein einfacheres Polynom, welches man nun erneut auf Nullstellen untersucht.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Linearfaktorzerlegung, Beispiel 2 | A.46.03

Linearfaktoren sind Klammern, die mit “mal” verbunden sind. In den Klammern darf “x” keine Hochzahl haben. Braucht man von einer Funktion in Linearfaktorzerlegung, hat die Funktion die Form: f(x)=a·(x-x1)·(x-x2)·(x-x3)·.... x1, x2, x3, … sind hierbei die Nullstellen der Funktion. Fazit: Man braucht die Nullstellen einer Funktion, dann kann man die Linearfaktorzerlegung schnell aufstellen. (Den Parameter “a” erhält man zum Schluss recht einfach, in dem man einen beliebigen Punkt einsetzt).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Linearfaktorzerlegung, Beispiel 4 | A.46.03

Linearfaktoren sind Klammern, die mit “mal” verbunden sind. In den Klammern darf “x” keine Hochzahl haben. Braucht man von einer Funktion in Linearfaktorzerlegung, hat die Funktion die Form: f(x)=a·(x-x1)·(x-x2)·(x-x3)·.... x1, x2, x3, … sind hierbei die Nullstellen der Funktion. Fazit: Man braucht die Nullstellen einer Funktion, dann kann man die Linearfaktorzerlegung schnell aufstellen. (Den Parameter “a” erhält man zum Schluss recht einfach, in dem man einen beliebigen Punkt einsetzt).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Schaubild einer Logarithmusfunktion erstellen, Beispiel 1 | A.44.07

ln-Funktionen zeichnet man über das asymptotische Verhalten an den Grenzen des Definitionsbereichs. Falls man Nullstellen oder Hoch-, Tief- oder Wendepunkte kennt, zeichnet man diese ebenfalls ein und sollte nun die Funktion zeichnen können. Falls notwendig, kann man noch eine Wertetabelle machen, also noch ein paar Punkte einzeichnen.


Dieses Material ist Teil einer Sammlung