Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Schaubilder von Funktionen | A.27.01

Für viele Aufgaben mit Schaubilder ist es unerlässlich, das Aussehen der Standardfunktionen zu kennen. Es ist wichtig, die Schaubilder der folgenden Funktionstypen zu kennen: 1.die Parabeln von ganzrationalen Funktionen, 2.von Exponentialfunktionen, 3.von trigonometrische Funktionen (Sinus und Kosinus), 4.Hyperbeln von Bruch-Funktionen, 5.von Wurzelfunktionen, 6.von Logarithmus-Funktionen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Schaubilder von Funktionen: Sinus-Funktion / Kosinus-Funktion | A.27.01

Für viele Aufgaben mit Schaubilder ist es unerlässlich, das Aussehen der Standardfunktionen zu kennen. Es ist wichtig, die Schaubilder der folgenden Funktionstypen zu kennen: 1.die Parabeln von ganzrationalen Funktionen, 2.von Exponentialfunktionen, 3.von trigonometrische Funktionen (Sinus und Kosinus), 4.Hyperbeln von Bruch-Funktionen, 5.von Wurzelfunktionen, 6.von Logarithmus-Funktionen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Schaubilder von Funktionen: Glockenkurve | A.27.01

Für viele Aufgaben mit Schaubilder ist es unerlässlich, das Aussehen der Standardfunktionen zu kennen. Es ist wichtig, die Schaubilder der folgenden Funktionstypen zu kennen: 1.die Parabeln von ganzrationalen Funktionen, 2.von Exponentialfunktionen, 3.von trigonometrische Funktionen (Sinus und Kosinus), 4.Hyperbeln von Bruch-Funktionen, 5.von Wurzelfunktionen, 6.von Logarithmus-Funktionen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Funktionen Schaubildern zuordnen, Beispiel 6 | A.27.02

Eine wichtige Aufgabe ist oft, Schaubildern ihre Funktionen zuzuordnen. Meist sieht es so aus, dass man mehrere Schaubilder gegeben hat, mehrere Funktionsgleichungen gegeben und nun muss man die Funktionsgleichungen den Schaubildern zuordnen. Es hilft unheimlich die Schaubilder der Standardfunktionen zu kennen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Parabelformen: Normalform, Scheitelform, Linearfaktorform LFF, Beispiel 2 - A.04.03

Parabeln gibt es in drei Formen: 1) die häufigste und wichtigste ist die "allgemeine Form" oder "Normalform" y=ax²+bx+c 2) die Scheitelform verwendet man, wenn der Scheitelpunkt gegeben ist oder man den Scheitelpunkt braucht y=a*(x-xs)²+ys [xs und ys sind hierbei die x- und y-Koordinaten des Scheitelpunkts] 3) die Linearfaktorform verwendet man manchmal, wenn es um die Nullstellen der Parabel geht. y=a*(x-x1)(x-x2) [hierbei sind x1 und x2 die Nullstellen der Parabel]. Sie sollten die drei Parabelformen beherrschen (vor allem die ersten beiden) und wissen, wie man die eine in die andere umwandelt.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Parabelformen: Normalform, Scheitelform, Linearfaktorform LFF, Beispiel 4 - A.04.03

Parabeln gibt es in drei Formen: 1) die häufigste und wichtigste ist die "allgemeine Form" oder "Normalform" y=ax²+bx+c 2) die Scheitelform verwendet man, wenn der Scheitelpunkt gegeben ist oder man den Scheitelpunkt braucht y=a*(x-xs)²+ys [xs und ys sind hierbei die x- und y-Koordinaten des Scheitelpunkts] 3) die Linearfaktorform verwendet man manchmal, wenn es um die Nullstellen der Parabel geht. y=a*(x-x1)(x-x2) [hierbei sind x1 und x2 die Nullstellen der Parabel]. Sie sollten die drei Parabelformen beherrschen (vor allem die ersten beiden) und wissen, wie man die eine in die andere umwandelt.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Scheitelpunkt berechnen über quadratische Ergänzung und Scheitelform, Beispiel 2 - A.04.04

Die Scheitelform einer Parabel lautet: y=a*(x-xs)²+ys. Hierbei sind xs und ys die x- und y-Koordinaten des Scheitelpunktes, a ist der Streckfaktor [bei Normalparabel a=1 oder a=-1]. Hat man die Normalform der Parabel gegeben und will den Scheitelpunkt berechnen, wendet man die quadratische Ergänzung an, um auf die Scheitelform zu kommen. Aus der Scheitelform liest man dann den Scheitelpunkt einfach ab.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Parabel verschieben, Beispiel 4 - A.04.08

Eine Parabel verschiebt man am einfachsten, indem man zuerst den Scheitelpunkt der Parabel berechnet (z.B. über quadratische Ergänzung), diesen Scheitelpunkt dann verschiebt und mit dem verschobenen Scheitelform dann wieder die Scheitelform der Parabel aufstellt (und die dann in Normalform umwandelt, falls des gewünscht ist).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Parabel strecken, Beispiel 4 | A.04.09

Strecken und Stauchen sind in Mathe mehr oder weniger das Gleiche. Staucht man eine Parabel (quetscht sie also zusammen) entspricht das einem Strecken mit einem Streckfaktor von weniger als 1. Man kann Parabel auf unterschiedliche Weisen strecken. Am wichtigsten ist die Streckung in y-Richtung. Hier muss man unterscheiden, ob man die Parabel von der x-Achse aus oder vom Scheitelpunkt aus streckt. Streckt man die Parabel an der x-Achse, ist das sehr einfach. Man multipliziert die ganze Parabel einfach mit dem Streckfaktor (egal in welcher Form die Parabel gegeben ist). Streckt man die Parabel vom Scheitelpunkt aus, muss man die Parabel in Scheitelform bringen [y=a*(x-xs)²+ys] und multipliziert nun nur “a” mit dem Streckfaktor. Anschließend kann man die Scheitelform wieder in Normalform umwandeln.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Achsenabschnitt und Achsenschnittpunkte (Nullstellen) berechnen, Beispiel 2 - A.04.10

Eine der sehr wichtigen Berechnungen bei Parabeln sind die Achsenschnittpunkte. Der Schnittpunkt mit der y-Achse heiß auch y-Achsenabschnitt. Man erhält diesen, in dem man x=0 in die Parabel einsetzt. Die Schnittpunkte mit der x-Achse heißen auch Nullstellen. Man erhält diese, in dem man die Parabelgleichung Null setzt und dann (meist die Mitternachtsformel anwendet, sprich p-q-Formel oder a-b-c-Formel). Je nach dem, was unter der Wurzel rauskommt, hat man keine/eine oder zwei Nullstellen.