Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Regression mit GTR / CAS berechnen | A.29.01

Folgende Problematik: Man hat beliebig viele Punkte und möchte diejenige Punktion, die am besten reinpasst, also möglichst nahe an allen Punkten vorbeiläuft. GTR oder CAS können solche Funktionen angeben, man nennt das Ganze “Regression” oder “Funktion anpassen/optimieren”... Man muss eigentlich nur die Tastenkombinationen kennen, zu denken gibt’s nicht viel. (Falls Sie weiter recherchieren möchten, probieren Sie die Suchbegriffe “Regression” oder “minimale Summe der quadratischen Entfernung”).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Regression mit GTR / CAS berechnen, Beispiel 1 | A.29.01

Folgende Problematik: Man hat beliebig viele Punkte und möchte diejenige Punktion, die am besten reinpasst, also möglichst nahe an allen Punkten vorbeiläuft. GTR oder CAS können solche Funktionen angeben, man nennt das Ganze “Regression” oder “Funktion anpassen/optimieren”... Man muss eigentlich nur die Tastenkombinationen kennen, zu denken gibt’s nicht viel. (Falls Sie weiter recherchieren möchten, probieren Sie die Suchbegriffe “Regression” oder “minimale Summe der quadratischen Entfernung”).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Regression mit GTR / CAS berechnen, Beispiel 2 | A.29.01

Folgende Problematik: Man hat beliebig viele Punkte und möchte diejenige Punktion, die am besten reinpasst, also möglichst nahe an allen Punkten vorbeiläuft. GTR oder CAS können solche Funktionen angeben, man nennt das Ganze “Regression” oder “Funktion anpassen/optimieren”... Man muss eigentlich nur die Tastenkombinationen kennen, zu denken gibt’s nicht viel. (Falls Sie weiter recherchieren möchten, probieren Sie die Suchbegriffe “Regression” oder “minimale Summe der quadratischen Entfernung”).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Regression mit GTR / CAS berechnen, Beispiel 3 | A.29.01

Folgende Problematik: Man hat beliebig viele Punkte und möchte diejenige Punktion, die am besten reinpasst, also möglichst nahe an allen Punkten vorbeiläuft. GTR oder CAS können solche Funktionen angeben, man nennt das Ganze “Regression” oder “Funktion anpassen/optimieren”... Man muss eigentlich nur die Tastenkombinationen kennen, zu denken gibt’s nicht viel. (Falls Sie weiter recherchieren möchten, probieren Sie die Suchbegriffe “Regression” oder “minimale Summe der quadratischen Entfernung”).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Funktionsanpassung, Beispiel 2 | A.31.02

Oft ist eine Funktion in Anhängigkeit von Parametern gegeben. Nun hat man die ein- oder andere Bedingung gegeben mit deren Hilfe man die Parameter bestimmen kann. Das Ganze nennt man Funktionsanpassung. Vermutlich kann man es auch “s4yx/nhyc” nennen. Typisches Beispiel sind Brücken, die eine bestimmte Höhe und/oder Breite haben oder zwei Straßen die durch ein Verbindungsstück glatt verbunden werden sollen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Funktionsanpassung | A.31.02

Oft ist eine Funktion in Anhängigkeit von Parametern gegeben. Nun hat man die ein- oder andere Bedingung gegeben mit deren Hilfe man die Parameter bestimmen kann. Das Ganze nennt man Funktionsanpassung. Vermutlich kann man es auch “s4yx/nhyc” nennen. Typisches Beispiel sind Brücken, die eine bestimmte Höhe und/oder Breite haben oder zwei Straßen die durch ein Verbindungsstück glatt verbunden werden sollen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Funktionsanpassung, Beispiel 1 | A.31.02

Oft ist eine Funktion in Anhängigkeit von Parametern gegeben. Nun hat man die ein- oder andere Bedingung gegeben mit deren Hilfe man die Parameter bestimmen kann. Das Ganze nennt man Funktionsanpassung. Vermutlich kann man es auch “s4yx/nhyc” nennen. Typisches Beispiel sind Brücken, die eine bestimmte Höhe und/oder Breite haben oder zwei Straßen die durch ein Verbindungsstück glatt verbunden werden sollen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Funktionsanpassung, Beispiel 3 | A.31.02

Oft ist eine Funktion in Anhängigkeit von Parametern gegeben. Nun hat man die ein- oder andere Bedingung gegeben mit deren Hilfe man die Parameter bestimmen kann. Das Ganze nennt man Funktionsanpassung. Vermutlich kann man es auch “s4yx/nhyc” nennen. Typisches Beispiel sind Brücken, die eine bestimmte Höhe und/oder Breite haben oder zwei Straßen die durch ein Verbindungsstück glatt verbunden werden sollen.


Dieses Material ist Teil einer Sammlung

Text

MatheGuru

Gesetz der großen Zahlen

Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. Hier wird das Gesetz der großen Zahlen erklärt und an einem Beispiel gezeigt.

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Polynomdivision, Beispiel 5 | A.12.07

Polynomdivision (oder Horner-Schema) wendet man an, falls weder Ausklammern, noch Substitution oder Mitternachtsformel funktionieren. Der große Nachteil der Polynomdivision ist der, dass man bereits eine Nullstelle braucht - die man eventuell durch Raten erhalten kann.


Dieses Material ist Teil einer Sammlung