Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Funktionen Schaubildern zuordnen, Beispiel 1 | A.27.02

Eine wichtige Aufgabe ist oft, Schaubildern ihre Funktionen zuzuordnen. Meist sieht es so aus, dass man mehrere Schaubilder gegeben hat, mehrere Funktionsgleichungen gegeben und nun muss man die Funktionsgleichungen den Schaubildern zuordnen. Es hilft unheimlich die Schaubilder der Standardfunktionen zu kennen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Exponentielles Wachstum berechnen, Beispiel 3 | A.30.03

Exponentielles Wachstum ist ein Wachstum, in welchem die Zunahme (oder Abnahme) immer proportional zum Bestand ist, sprich: zum bereits vorhandenen Bestand kommt immer der gleiche prozentuale Anteil dazu (oder geht weg). Standardbeispiel: Zinsen bei der Bank (Zu einem angelegten Kapital kommt immer der gleiche Zinssatz dazu). Typisch für exponentielles Wachstum ist die Verdopplungszeit (bei exponentieller Zunahme) bzw. die Halbwertszeit (bei exponentielles Abnahme). Egal wann man mit der Messung beginnt, es dauert bei jedem Vorgang immer gleich lang, bis sich der Bestand verdoppelt (bzw. halbiert) hat. Exponentielles Wachstum wird durch die Funktionsgleichung f(t)=a*e^(kt) beschrieben.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Exponentielles Wachstum berechnen mit Differentialgleichung, Beispiel 1 | A.30.04

Die Differenzialgleichung vom exponentiellen Wachstum lautet: f'(t)=k*f(t) und sagt damit aus, dass die Änderung immer proportional zum Bestand ist (falls k=0,05, bedeutet das, dass die Zunahme immer 5% vom Bestand ist). Die Zahl “k” heißt Proportionalitätsfaktor oder Wachstumskonstante und taucht auch in der Funktionsgleichung vom exponentiellen Wachstum auf.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Differentialgleichung: Was ist eine DGL und wie rechnet man damit? | A.30.02

Eine Differenzialgleichung (kurz: DGL) ist eine Gleichung in welcher Ableitung und Funktion auftauchen. Eine DGL beschreibt daher einen Zusammenhang zwischen der Änderung des Bestands und dem Bestand selber.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: So leitet man vermischte Funktionen ab, Beispiel 4 | A.13.07

In den bisherigen Kapiteln haben wir hauptsächlich Polynome (“normale” Funktionen) abgeleitet. Meistens müssen Sie jedoch Funktionen ableiten, in denen Sinus, Kosinus, e-Funktionen, Wurzeln, ln, etc.. vermischt werden. Das üben wir an dieser Stelle.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Polynom bzw. ganzrationale Funktion integrieren; Polynom-Integral bilden, Beispiel 5 | A.14.01

Wie lässt sich ein Polynom ableiten: Polynome (ganzrationale Funktion oder auch Parabeln höherer Ordnung) integriert man (man sagt auch aufleiten) nach einer einfachen Formel. Die Hochzahl wird um eins erhöht, die neue Hochzahl kommt runter in den Nenner(!) und wird mit den eventuell vorhandenen Vorzahlen verrechnet.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Exponentialfunktion: was ist das? Wie rechnet man mit Exponentialfunktionen? Beispiel 1 | A.06.03

Eine Exponentialfunktion ist eine Funktion, in welcher die Unbekannte “x” in der Hochzahl steht. Die einfachen Exponentialfunktionen (2^x, 3^x, …) sehen alle so aus, dass die sich links der x-Achse nähern und rechts hoch ins Unendliche laufen. (Die x-Achse ist also eine Asymptote). Durch Verschieben, Strecken und Spiegeln der Funktionen ändert sich natürlich deren Aussehen. Sie müssen in der Lage sein, das Aussehen der Exponentialfunktionen grob zu erkennen. Eine weitere Fragestellung, der man bei Exponentialfunktionen häufig begegnet, ist Folgende: Von einer Funktion ist bekannt, dass sie die Form: y=a*b^x hat. Nun sind zwei Punkte gegeben und Sie müssen die Parameter “a” und “b” bestimmen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Exponentialfunktion: was ist das? Wie rechnet man mit Exponentialfunktionen? Beispiel 4 | A.06.03

Eine Exponentialfunktion ist eine Funktion, in welcher die Unbekannte “x” in der Hochzahl steht. Die einfachen Exponentialfunktionen (2^x, 3^x, …) sehen alle so aus, dass die sich links der x-Achse nähern und rechts hoch ins Unendliche laufen. (Die x-Achse ist also eine Asymptote). Durch Verschieben, Strecken und Spiegeln der Funktionen ändert sich natürlich deren Aussehen. Sie müssen in der Lage sein, das Aussehen der Exponentialfunktionen grob zu erkennen. Eine weitere Fragestellung, der man bei Exponentialfunktionen häufig begegnet, ist Folgende: Von einer Funktion ist bekannt, dass sie die Form: y=a*b^x hat. Nun sind zwei Punkte gegeben und Sie müssen die Parameter “a” und “b” bestimmen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Beschränktes Wachstum berechnen | A.07.03

Begrenztes Wachstum (=beschränktes Wachstum) wächst am Anfang relativ schnell und nähert sich allmählich und immer langsamer einer Grenze (=Schranke), welche mit G oder S bezeichnet wird. Typische Beispiele für begrenztes Wachstum sind Erwärmungs- oder Abkühlungsvorgänge, Mischungsverhältnisse (z.B. irgendein Zeug löst sich in Wasser etc.. auf). Allgemein gilt für begrenztes Wachstum, dass immer ein konstanter Wert zum Bestand dazukommt und ein bestimmter Prozentwert weg geht. Die Funktionsgleichung vom begrenztes Wachstum lautet: f(t)=G+a*e^(-k*t). In einiges Aufgaben fällt das Wort “Sättigungsmanko”. Die Berechnung von begrenztem Wachstum erfolgt über eine Tabelle und Schritt für Schritt, d.h. aus einem Bestand berechnen wir den Bestand vom nächsten Tag/Jahr/Minute/..., daraus dann den übernächsten Bestand usw. Wir verwenden hierbei die Formel dB(t)=k*(G-B(t)), wobei B(t) der aktuelle Bestand ist, G die Grenze, k irgendein Wachstumsfaktor, dB(t) die Zunahme im aktuellen Zeitintervall. (In der Oberstufe/Studium erfolgt dann eine geschicktere Berechnung über e-Funktionen [Kap.A.30.05]) .


Dieses Material ist Teil einer Sammlung